
Adaptive Delivery for High Definition Map Using
A Multi-Arm Bandit Approach

Dawei Chen ∗, Haoxin Wang †, and Kyungtae Han ∗
∗ InfoTech Labs, Toyota North America R&D, Mountain View, CA, USA
† Department of Computer Science, Georgia State University, GA, USA

Email: dawei.chen1@toyota.com, haoxinwang@gsu.edu, kyungtae.han@toyota.com

Abstract—A high definition (HD) map is a key technology that
enables autonomous driving, which has the characteristics of
frequent updates and low latency requirements. Edge computing
provides an efficient way to deliver the HD map to autonomous
vehicles, which deploys the edge servers at the edge of the
network and shortens the transmission distance. The edge-
assisted HD map delivery is generally done by the wireless
transmission between edge servers, like roadside units (RSU),
and vehicles. However, the transmission channel status, like the
transmission rate, is fragile and easily influenced by the speed
of vehicles, the weather, and the number of connections of RSU.
A proper HD map delivery is needed to meet a time deadline
over different channel conditions. This work firstly utilizes the
love-of-variety-based method to model the different versions
of the HD maps with different data sizes. Then, an adaptive
upper confidence bound based multi-arm bandit method is
proposed to choose the appropriate version of the HD map under
the different wireless communication statuses. The simulation
results show the effectiveness of our proposed method, which
achieves the best total accumulative rewards and the least regret
compared with the baseline methods.

I. INTRODUCTION

Having stepped into the era of information technology,
there are enormous artificial intelligence-based autonomous
devices, technologies, and services coming into being, and
one important branch is the autonomous vehicle or the in-
telligent vehicle. According to the National Highway Traffic
Safety Administration, the levels of vehicle automation can
be categorized into six classes, which are distinguished by
the extent of autonomy. Currently, the performance of au-
tonomous vehicles can just meet the requirements between
level 2 and 3, and both of which require the driver must be
ready to take back control at any time. Aimed at achieving
a higher automation level, one effective way is to utilize
the high definition (HD) map. Unlike the traditional map,
HD map is represented with a high degree of precision and
resolution, which is as fine as 10-20 centimeters or better.

HD map is made up of various information and resources,
such as drivable paths, lane marks, the priority of lanes,
traffic lights and crosswalk to lane association, adjacent
objects, and street furniture, which is represented in a high
degree of resolution and precision, generally in the centimeter
level. For practical autonomous driving use cases, HD map
is the indispensable key for the advanced driver assistance
system (ADAS). Intuitively, the contents of HD map can be
roughly categorized into two classes: dynamic objects (such
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Fig. 1. HD map structure.

as pedestrians and vehicles) and static objects (such as traffic
signs and lights). According to the definition of Automotive
Edge Computing Consortium (AECC), the composition of
HD map is layered, which can be represented by the highly
dynamic layer, transient dynamic layer, transient static layer,
and permanent static layer, as is illustrated in the upper part
of Fig. 1 [1].

In the current map, it is common to find the gaps between
actual circumstances and the map, which take days to be
corrected. However, for autonomous driving, any delayed
update for a HD map can result in dangerous or even fatal
accidents without human intervention [2]. Therefore, a HD
map must be updated in a timely manner. To deliver a HD map
in a time-efficient way, edge computing paradigm can be an
effective solution, which geographical-distributively deploys
edge nodes within the network. In this way, the transmission
distance can be reduced. The overall latency for the HD map
delivery can be remarkably reduced accordingly [3].

However, the edge-assisted HD map delivery is generally
done by the wireless transmission between an edge server, like
a roadside unit (RSU), and vehicles. The transmission rate
is fragile and easily influenced by the speed of vehicles, the
weather, and the current number of connections of RSU. With
different channel conditions, to complete HD map delivery
within the time deadline, this work proposes a multi-arm
bandit-based adaptive HD map selection scheme to choose
the proper version of HD map to be delivered so that the
deadline can be met anyway.

One of the challenges is how to model the different versions
of HD map and quantify the corresponding data sizes. In this
work, we propose a love-of-variety-based method to connect
the number of sensors used for HD map generation and the
HD map data size. When the variety is low, the HD map data
is small as well since the information contained is less, which



is in accordance with the low transmission rate case. Likewise,
when the variety is high, the number of utilized sensors is
large, so the HD map data is large and in accordance with
the high transmission rate case. To the best of our knowledge,
there is no existing literature that models the HD map using
love-of-variety-based approach.

Having modeled the different versions of HD map with
different data sizes, how to select the proper one under
a different communication status needs to be considered.
Since communication channel varies from time to time, an
adaptive upper confidence bound (AUCB) based-multi-arm
bandit (MAB) method is proposed to solve such a sequence
decision problem [4]. There is some existing literature investi-
gating the MAB methods on autonomous driving applications.
[5] proposes a restless MAB method to find a scheduling
scheme for the edge server to minimize the traveled distance
of autonomous vehicles. [6] proposes a multi-agent MAB
algorithm for RSUs to learn the caching strategy for max-
imizing the accumulated cache utility over the time horizon.
[7] proposes a MAB-based quality aware and cost-aware ve-
hicle selection scheme to dynamically select suitable vehicles
to reduce task replications. Also, there are some existing
work focusing on the the low-latency and accurate HD map
generation. [8] proposes a reinforcement learning-based data
source selection scheme for efficient HD map distribution
in vehicular named data networking scenarios. [9] proposes
an HD map update algorithm, which utilizes only reliable
information and considers the geometric characteristics of
landmarks in a number of crowdsourced data. However, no
existing literature considers an adaptive HD map selection for
HD map delivery under different wireless channel conditions.

To summarize, the main contributions of this paper are as
the following:

• In this paper, we propose a love-of-variety-based method
to model the different versions of HD map with different
data sizes. To the best of our knowledge, there is no
existing literature doing in this way.

• To address the HD map version selection problem
regarding different wireless communication status, an
AUCB algorithm is proposed.

• Simulation results show the effectiveness of our proposed
method, which achieves the best total accumulative re-
wards and the least regret compared with the baseline
methods.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we firstly introduce the love-of-variety-
based HD map modeling in subsection II-A. Then, the com-
munication modeling between an edge server and vehicles is
described in subsection II-B. Finally, the formulation of the
proper HD map selection problem with delivery time deadline
is given in subsection II-C.

A. High Definition Map Model

HD map is inevitable for autonomous driving, which is
overlaid with various information, such as road signs, lane

markings, pedestrian, and vehicle locations. Basically, the HD
map is generated from the crowdsourcing data captured by
the on-vehicle sensors, such as Radar, LiDar, camera, GNSS,
IMU, and ultrasonic sensors. Intuitively, when the number of
sensors is larger, the data size of generated HD map is huger
accordingly, since the information collected by the different
kinds of sensors is addictive. To model the different versions
of HD map, we propose a love-of-variety-based approach.

We assume the HD map generator can perform one type of
data in a specific time slot, and the generator has a demand
for multiple varieties of sensor data over time to extract the
entire information. Therefore, a time vector t = ti∈N can
be used to describe the data analysis process over different
sensors, where ti indicates the HD map generator is executing
a specific kind of sensor data during a fixed time slot, i
is the time slot index, and N is the total time slots index
set. Apart from the utilization of diverse sensors, the data
size of the HD map is also related to computation time slot
ti. With the increase of time consumption, more data can
be analyzed, and the data size of obtained information that
contributes to the formation of the HD map will be larger
accordingly. Therefore, the utility function that indicates the
data size of the generated HD map can be defined as u(ti),
which is a strictly increasing and concave function and meets
the condition u(0) = 0, as is suggested in [10]. The general
utility function can be defined as

u(ti) =
1

1− ρ

[
(a+ ti)

1−ρ − a1−ρ
]
+ bti, (1)

where a ≥ 0, b ≥ 0, and 0 < ρ < 1 are constant
coefficients. Intuitively, the data size of the obtained HD map
from computation over different types of sensors are additive.
Overall, the aggregated utility of HD map data generator is∑

i∈N u(ti).
Mathematically, to involve variety, one key challenge is

how to evaluate or quantify the computation ability of the
HD map generator to hand over computation from one kind
of sensor data x to another kind of sensor data y, or how to
quantify the diversity of sensor data computed within a certain
time period. Besides, since the HD map generator needs
diverse sensor data to obtain more accurate and effective
information for HD map, quantifying the willingness of
exchanging among multiple sensors is also challenging. In
order to solve this problem, we introduce elasticity, whose
definition is shown below.

Definition 1. For two variables x and y, the x-elasticity of
y is defined as ϵyx = − ∂y

∂x
x
y .

The interpretation of elasticity is that the percentage change
in y is in response to the percentage change in x. If the
value of elasticity is larger, it means y is more sensitive to
the change of x. To quantify the willingness of exchanging
among multiple sensors, the definition of relative love-of-
variety (RLV) is given as the following.



Fig. 2. Illustration of RLV of HD map generator.

Definition 2. The HD map generator’s relative love-of-variety
is the elasticity of the marginal utility with respect to the
computation time slot ti, which is described by

r(ti) = ϵu
′

ti = −u
′′
ti

u′ > 0. (2)

Obviously, from Definition 2, the value of RLV reflects
whether the HD map generator is willing to exchange different
sensor data in consecutive time slots for achieving a higher
marginal utility [11], as is described in Fig. 2. Also, we
associate the relative love-of-variety with data size, which
is s = r × f , where f is a constant denoting the data
size parameter. For case 3, the HD map generator changes
consumption among sensor data at the end of time slot N/3
and achieves the largest HD map data size s3. For case 2,
the HD map generator consumes two types of sensor data
within time N and achieves data size s2. While the HD
map generator in case 1 keeps the same type of sensor data
throughout time interval and achieves the lowest data size s1.

B. Communication Model

In this work, we adopt time-division medium access
(TDMA) technology as the communication protocol between
the vehicle and RSU. Without loss of generality, for other
protocols, similar approaches can be easily extended. Besides,
it is assumed that the vehicles within the same RSU coverage
are allocated an orthogonal sub-channel and the interference
brought by neighbor users can be ignored. For the specific
autonomous vehicle, the transmission rate at each time slot
can be described as νi = B log2

(
1 + ph

N0

)
, where B is the

sub-channel bandwidth allocated to the autonomous vehicle,
p is transmission power, h is channel gain between the vehicle
and RSU at time slot ti, and N0 is the Gaussion noise.
Intuitively, the required time for HD map transmission at each
time slot can be characterized as di = si

νi
= si

B log2

(
1+ ph

N0

) .

Suppose the span of each time slot tn is the deadline for the
HD map delivery, therefore, with the proper selection of si,
the delivery time dn should be less or equal to tn.

C. Problem Formulation

We consider a time period T containing n time slots
{t1, ..., ti, ..., tn}. Within each time slot, the autonomous
vehicle needs the corresponding HD map being delivered
from the RSU. There are total k versions of HD map and the
set of available HD map is denoted as S = {s1, ..., sk}. At
each time slot ti, the map sij is selected, where j ∈ [1, k]. As

is described in the previous subsection, the different version
of HD map is made up by a different number of sensors,
accordingly, the utility or quality of HD map rj and the data
size si will be different as well. For each HD map delivery
time slot, the purpose is to get the highest map quality while
meeting the deadline of transmission completion time, i.e.,
within the time slot. Therefore, the objective function of this
problem can be defined as follows,

max
j

n∑
i=1

rij ,

s.t. C1 :
sij
νi

≤ ti,

C2 : sj ∈ S.

(3)

The first constraint denotes that the transmission time of the
selected HD map cannot exceed the time limitation, which is
the duration of a time slot. The second constraint describes
the selected HD map should belong to the available HD map
set. Such a submodular problem with cardinality constraint is
approved NP-hard [6]. To solve this problem, we propose a
multi-arm bandit based-solution.

III. METHOD

In this section, the traditional MAB methods, greedy, and
ϵ greedy, are introduced in subsection III-A and the proposed
AUCB is described in subsection III-B

A. Traditional Action-Value Methods

To solve problem (3), a MAB based-method can be a
solution. Basically, MAB problem is a class of problems that
allocate a limited set of resources between alternative choices
in a way so that the expected rewards can be maximized.
Here, we define each action at is the choice of the HD map
version sj . The rewards Rt will be the corresponding utility
of the selected HD map. The expected value followed by an
arbitrary action a is the expected reward given that arm a is
selected, which can be denoted as q∗(a) = E[Rt|At = a]. In
other words, the purpose of our proposed method is to select
the HD map version a with the highest utility and meet the
transmission deadline at the same time.

To solve this problem, the challenge is the tradeoff between
exploration and exploitation [12]. Since the reward distribu-
tion of each arm is not prior-known for the vehicle, therefore,
the final policy will be learned based on each observation.
We denote the estimated value of action a at time slot t as
Qt(a). The closeness of Qt(a) and q∗(a) is desired. Here,
exploration means we need to choose the specific version of
HD map many times so that the reward can be estimated
more accurately or the reward statistics are more precise. The
exploitation here means the current HD map version with
the highest reward should be selected so that the long-term
rewards can be achieved.

To maximize the long-term rewards, the challenge is to
estimate the value of actions and use estimates to make action
selection decisions. One thing to note here is the true value of



Algorithm 1 ϵ-greedy algorithm for MAB
1: Input: Action space A; Maximum iteration steps tmax;

Exploring probability ϵ.
2: for a=1:k do
3: Initialize Q(a) = 0 and R0 = 0;
4: end for
5: for t=1:n do
6: if probability is 1− ϵ then
7: Select an arm based on (4);
8: else
9: Select a random arm in an equal probability way;

10: end if
11: Accumulate the reward Rt;
12: Update Qt by Qt−1 +

1
t (Rt−1 −Qt−1);

13: t=t+1;
14: end for
15: Output: the optimal HD map selection scheme.

an action is the mean reward when the action is chosen. An
intuitive way to estimate this is to use the received rewards:
Qt(a) =

∑t−1
i=1 Ri×1At=a∑t−1

i=1 1At=a
, where 1 is the selection variable

that is 1 if the action is taken and 0 if it is not. The numerator
means the sum of rewards when a is taken prior to the current
time slot t. In addition, the denominator is the number of
times to take action a prior to the current time slot t.

The typical solution of MAB for the high exploitation is
the greedy method, which means at each time slot, the arm
with the highest reward will be selected and the probability to
select the other is zero. The corresponding selection scheme
can be written as

At = argmax
a

Qt(a). (4)

Here, argmaxa means the action a maximizes the estimated
reward value. Obviously, the greedy method always exploits
the current knowledge to maximize the concurrent reward.

The greedy method mentioned above selects the arm at each
time slot in an exploitation way, which is disadvantageous for
maximizing the long-term rewards. Because with a limited
number of arms observed, the rewards and corresponding
statistics of other unobserved ones cannot be obtained, which
may contain higher rewards than existing observations [13].
To make a balance between exploitation and exploration, one
way is to introduce a probability to select the other arm, which
is called ϵ-greedy algorithm. This method behaves greedily
most of the time, but with the small probability ϵ, it selects
randomly from among all the actions with equal probability,
which is independent of the action-value estimation. The
details are shown in Algorithm 1.

Step 9 in Algorithm 1 is the incremental implementation
update method, which helps compute the average of ob-
served rewards in a computation-efficient way. Originally, the
average rewards are calculated by Qt = R1+R2+...+Rt−1

t−1 ,
where Qt describes the estimation of action value after it
has been chosen t − 1 times. However, in this manner, the

requirements for memory and computation would increase
over time as more observations were obtained. Since each
additional reward needs extra memory to store and additional
computation to calculate the numerator. To overcome this, we
take the update scheme as step 9 in Algorithm 1. A simple
derivation is shown below. Given the t−1-th estimation Qt−1

and reward Rt−1, the updated average of all the n rewards
can be obtained by (8).

Qn =
1

t− 1

t−1∑
i=1

Ri =
1

t− 1

(
Rt−1 +

t−2∑
i=1

Ri

)

=
1

t− 1

(
Rt−1 + (t− 2)

1

t− 2

t−2∑
i=1

Ri

)
=

1

t− 1
(Rt−1 + (t− 2)Qt−1)

=
1

t− 1
(Rt−1 + (t− 1)Qt−1 −Qt−1)

= Qt−1 +
1

t
(Rt−1 −Qt−1) .

(5)

Obviously, this method only requires memory for Qt and t,
and small computation for each new observed reward.

B. Adaptive Upper-Confidence-Bound Method

The greedy method focuses on the best-performed arm at
representation but sometimes the other arms may be better. ϵ-
greedy introduces a probability to try the non-greedy actions
but with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the
non-greedy actions according to their potential for actually
being optimal, taking into account both how close their
estimates are to being maximal and the uncertainties in those
estimates. In addition to our empirical reward estimates,
we need an upper confidence bound to describe the largest
plausible mean of each arm. One way to solve this is the
upper-confidence-bound (UCB) algorithm [14]. For the UCB
method, to construct the confidence interval, the utilization
of Hoeffding’s inequality and Chernoff bound is inevitable,
which are defined as follows.

Theorem 1. (Hoeffding’s inequality) Given independent ran-
dom variables {X1, ..., Xm} where the range of each variable
is ai ≤ Xi ≤ bi, we have

P

(
1

m

(
m∑
i=1

Xi −
m∑
i=1

E[Xi]

)
≥ ϵ

)
≤ e

(
−2ϵ2m2∑m

i=1
(bi−ai)

2

)
.

(6)

In this way, Hoeffding’s inequality provides an upper bound
on the probability that the sum of bounded independent
random variables deviates from its expected value by more
than a certain amount. Traditionally, central limit theorem
guarantees are useful for large sample sizes, but if the number
of samples is small, it is not suitable anymore. Therefore, the
Chernoff bound can be an alternative way to deploy.



Algorithm 2 Proposed AUCB algorithm
1: Input: The transmission rate ri; Action space A; Max-

imum iteration steps tmax; Exploring probability ϵ; The
span of each time slot g.

2: for t=1:n do
3: Calculate the transmission time Ti of each HD map

version based on current transmission rate ri.
4: if Ti < g then
5: The HD map version will be put into action space;
6: else
7: Remove the HD map version in the action space;
8: end if
9: for a=1:k do

10: Initialize Q(a) = 0 and R0 = 0;
11: Select an arm based on the policy (7);
12: Accumulate the reward Rt;
13: Update Qt by Qt−1 +

1
t (Rt−1 −Qt−1);

14: t=t+1;
15: end for
16: end for
17: Output: the optimal HD map selection scheme.

Theorem 2. (Chernoff bound) Given the independent random
variable X , the bound in terms of its moment-generating
function is given by P(X ≥ ϵ) ≤ E[etX ]

eϵt .

Then, using the Hoeffding’s inequality and Chernoff bound,
the action selection method of AUCB is described as

At = argmax
a

[
Qt(a) + c

√
ln t

Nt(a)

]
, (7)

where ln t is the natural logarithm of t, Nt(a) denotes the
number of times that action a is selected prior to time t, and
the number c > 0 is a constant that controls the degree of
exploration.

Obviously, AUCB adopts a square root term to measure the
uncertainty or variance of the action’s value. Mathematically,
what is maximized in (7) is a sort of upper bound on the
possible values of action a, where c is the one to determine
the confidence level. On the one hand, the uncertainty is
presumably reduced for each time the arm a is selected.
This is because the denominator Nt(a) increments and the
uncertainty term decreases accordingly. On the other hand,
each time when the arm that is not a is selected, the t increases
but the denominator Nt(a) remains the same, resulting in
the increasing uncertainty estimation. The natural logarithm
in the numerator decides the increase will be smaller and
smaller over time but the value is bounded. Therefore, all
of the actions will be traversed but the selection probability
for the arms with low estimation values or high-frequency
selections will decrease over time [15]. The overall proposed
AUCB based-method is shown in Algorithm 2.

Now, for the algorithms, how to evaluate their performances
needs to be considered. One standard approach is to compare
the algorithm’s cumulative rewards to the best-arm benchmark

q∗(a) = max
a

Q(a) × T . The regret can be defined as the
following.

Definition 3. The regret of the algorithm at round T is defined
as:

R(T ) = q∗(a)× T −
T∑

t=1

(at). (8)

With this definition, the regret bound of AUCB can be
defined.

Theorem 3. The regret bound for the UCB algorithm is, for
T ≥ 1,

R(T ) ≤
∑
i

4c2δ−1
i log(T ) +

2c2

c2 − 1
δi, (9)

where δi = maxj q
∗(a)j −qi is the optimality gap of an arm.

IV. SIMULATION RESULTS

In this section, the simulation results are introduced. The
experiments are conducted on MATLAB platform. The total
play rounds are set as 2,000. The parameter ϵ is set as
0.01 for ϵ greedy algorithm. c is set as 3 for the proposed
AUCB algorithm. The RLV-based utility function is defined
as u(ti) = 2 × (1 + ti)

0.5 − 1, by setting a = 0, b = 1,
and ρ = 0.5. During the time period, the channel bandwidth
B is randomly chosen from 10 MHz, 20 MHz, 30 MHz, 50
MHz, and 100 MHz. The transmission power p is 23 dBm.
The Gaussian noise N0 is set as -96 dBm. The HD map data
size parameter f is set as 20. The duration of each time slot
ti is 0.1s. The number of arms k is set as 5, which means we
have 5 different versions of HD map.

The total accumulative rewards and regret are illustrated in
Fig. 3 and Fig. 4, respectively. In Fig. 3, from the perspective
of long-term rewards, the proposed AUCB achieves the high-
est value, followed by the ϵ greedy and greedy algorithms,
respectively. This is because the greedy method focuses on
the best-performed arm at representation but sometimes other
actions may be better. ϵ-greedy introduces a probability to
try non-greedy actions but with no preference for those that
are nearly greedy or particularly uncertain, which results in a
better performance compared with the greedy algorithm. For
the proposed AUCB algorithm, it adopts a square root term
to measure the uncertainty or variance of the action’s value,
which helps to make a better trade-off between exploration
and exploitation. With the wireless channel constraint, the
proposed AUCB has a high probability to excavate a better
arm to play instead of choosing the current best-performed
one. This can also be verified in Fig. 4. The regret shows the
closeness between the optimal HD map chosen policy and
the actual policy. Therefore, a lower regret value indicates
the performance of the algorithm is better. Likewise, since
the better trade-off between exploration and exploitation, the
proposed AUCB algorithm achieves the lowest regret value,
followed by the ϵ greedy algorithm. The greedy algorithm ob-
tains the highest regret value because it is actually conducted
in a pure exploitation way.



Fig. 3. Total cumulative rewards comparison.
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In addition, the results of the probability of optimal arm
playing are shown in Fig. 5, which is in accordance with
the previous results for rewards and regrets. With a higher
probability allocated to the exploration, the chances to find
the optimal arm are increased accordingly. Therefore, the
proposed AUCB achieves 80% probability to choose the best
proper HD map for delivery, which meets the time deadline
and obtains more information (reflected by a higher relative
love-of-variety and rewards) simultaneously.

Besides, from Figs. 3, 4, and 5, we can find one thing is
common, which is that the curve of AUCB fluctuates the most
while the greedy one is more steady compared with the others.
This is because greedy is performed in a pure exploitation
way and with no exploration, which makes it more stable.
Although ϵ greedy makes an improvement by introducing the
probability ϵ for exploration, the value is usually small so it
behaves steadily compared with the proposed AUCB. While
in terms of the proposed AUCB, the term ln t is introduced for
the arm selection policy. All of the actions will be traversed
but the selection probability for the arms with low estimation
values or high-frequency selections will decrease over time,
resulting in the obvious fluctuation.

V. CONCLUSION

As a latency-sensitive application, HD map delivery needs
to be performed in a timely manner for enabling autonomous
driving. This work discusses the problem of edge-assisted HD
map delivery with adaptive version selection under different
wireless channel statuses. To solve this problem, we firstly
propose a love-of-variety method to model the different
versions of HD maps that have different data sizes. Then, an
AUCB method is proposed to learn the optimal policy for HD
map selection under a certain wireless condition. The simu-
lation results show the effectiveness of our proposed method,
which achieves a higher total accumulative reward, a lower
regret value, and a higher optimal arm selection probability,
compared with baseline methods. For the future work, we will
explore the impact of factors on the performances, such as the
bandwidth and required computation power. In addition, this
work currently consider one vehicles that requires HD map.
We would like to consider a scenario that a group of vehicles
share the same link with edge server that need HD map under
different communication status.
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