
1

DSORL: Data Source Optimization with Reinforcement
Learning Scheme for Vehicular Named Data Networks

Daniel Mawunyo Doe, Member, IEEE, Dawei Chen, Member, IEEE, Kyungtae Han, Senior Member, IEEE,
Haoxin Wang, Member, IEEE, Jiang Xie, Fellow, IEEE, and Zhu Han Fellow, IEEE

Abstract—High-definition (HD) map is an indispensable build-
ing block in the future of autonomous driving, allowing for fine-
grained environmental awareness, precise localization, and route
planning. However, since HD maps include rich, multidimensional
information, the volume of HD map data is substantial and can-
not be transmitted frequently by several vehicles over vehicular
networks in real-time. Therefore, in this paper, we propose a
data source selection scheme for effective HD map transmis-
sions in vehicular named data networking (NDN) scenarios. To
achieve our goal, we created a vehicular NDN environment for
data collection, processing, and transmission using the CARLA
simulator and robot operating system 2 (ROS2). Next, due to
our vehicular NDN’s dynamic and complex nature, we formulate
the data source selection problem as a Markov decision process
(MDP) and solve it using a reinforcement learning approach.
For simplicity, we termed our proposed scheme data source
optimization with reinforcement learning (DSORL), which selects
suitable vehicles for HD map data transmission to MEC servers.
The experiment results indicate that our suggested method
outperformed existing baseline schemes, such as RLSS, Pro-
RTT, and HDM-RTT, across all performance criteria in the
evaluation. For instance, the system throughput increases by
65%–72.68% compared to other baseline systems. Similarly, the
proposed approach can minimize packet loss rate, data size,
and transmission time by up to 60.6%, 77.5%, and 54.1%,
respectively.

Index Terms—High-definition map, map data transmission,
named data networking, reinforcement learning, and vehicular
networks.

I. INTRODUCTION

A. Background and Motivation

With the fast development of mobile communications, ve-
hicular sensing technologies, and autonomous driving, the
internet of autonomous vehicles (AVs) has become a prevalent
topic [1]. Recent autonomous vehicles can determine their

This work is partially supported by funds from Toyota Motor North Amer-
ica, Amazon, and the US National Science Foundation (NSF) under Grant
1910667, Grant 1910891, Grant 2025284, CNS-2107216, CNS-2128368, and
CMMI-2222810.

Daniel Mawunyo Doe is with the Department of Electrical and Computer
Engineering, University of Houston, 4800 Calhoun Rd, Houston, TX 77004
(e-mail: dmdoe@uh.edu).

Zhu Han is with the Department of Electrical and Computer Engineering
at the University of Houston, Houston, TX 77004 USA, and also with the
Department of Computer Science and Engineering, Kyung Hee University,
Seoul, South Korea, 446-701 (e-mail: hanzhu22@gmail.com).

Dawei Chen and Kyungtae Han are with InfoTech Labs, Toyota Motor
North America Research and Development, Mountain View, CA 94043 USA
(e-mail: dawei.chen1@toyota.com, kyungtae.han@toyota.com).

Haoxin Wang is with the Department of Computer Science, Georgia State
University, Atlanta, GA 30302 (e-mail: haoxinwang@gsu.edu).

Jiang Xie is with the Department of Electrical and Computer Engineering,
University of North Carolina at Charlotte, Charlotte, NC 28223 USA (e-mail:
jxie1@uncc.edu).

accurate locations and construct collision-free routes using
high-definition (HD) maps. HD maps offer more dependable
sensing capability and assistance for the decision-making layer
of autonomous driving, where latency is critical. HD maps are
conceptual maps with three layers: 1) the road model layer,
2) the lane model layer, and 3) the localization model layer
[2]. The road model is utilized for navigation planning, while
the lane model is used for route planning based on current
road and traffic circumstances. The localization model is used
to find the car on the map, and the lane model can only help
with vehicle perception if the vehicle is properly found on the
map. The HD map is necessary for autonomous driving, but its
amount of data is enormous compared to a typical electronic
map. As a result, generating, transmitting, and storing the full
HD map data onboard in real-time with minimal latency and
high reliability is impracticable in vehicular networks.

Named data networking (NDN) is a prospective future
networking architecture in which each piece of content is con-
sidered to be an entity in the network, which can overcome the
shortcomings of the current host-based network architecture
(i.e., TCP/IP) in the existing vehicular networks [3], [4]. NDN
offers significant promise for the automotive network, such as
facilitating vehicle mobility, data sharing, data naming, and
a naming-based route forwarding approach [5], [6]. However,
several technological obstacles exist to creating an efficient HD
map update via construction and distribution strategy in the
vehicle NDN scenario. First, existing approaches choose data
sources via a communication model (vehicle-to-infrastructure
(V2I) or vehicle-to-vehicle (V2V)) [7], [8], where throughput
can be drastically decreased as the number of vehicles grows.
Second, existing approaches choose data sources based on
the round-trip time (RTT) between the data source and the
vehicle. In this circumstance, vehicle status changes in real-
time, particularly in complicated moving settings. As a result,
the RTT measure cannot ensure the optimal selection outcome
since other forms of the vehicle information (e.g., data size,
speed, and direction) are not taken into account. Finally,
because of vehicle mobility, frequent data source handovers
will result in frequent RTT modifications, and wasteful data
transfers [9].

Vehicular wireless communication, processing, and caching
capabilities have recently advanced significantly [10], [11]. As
a result, HD map update work may be divided into multiple
subtasks and processed via vehicular distributed computing
[12]. First, idle computer resources in automobiles are com-
pletely exploited, which may boost resource utilization and
cloud server performance. Second, in vehicular NDN, utilizing
vehicles as data collectors and processors may minimize the

2

transfer of substantial raw environmental data while improving
overall system latency [13]. Extensive studies have been
conducted on distributed computing for vehicular networks
[14]. For example, [14], [15] collaborated to optimize input
data movement and job allocation in wired data centers (DCs)
to concurrently decrease inter-DC traffic, enhance throughput,
and minimize delays. Furthermore, in wireless sensor net-
works, reducers and route selection are optimized in tandem
to lower transmission costs [16]. However, since the input
data for the HD Map update is gathered in real-time, the data
localization difficulties in [15] are not practical when crowd-
sensing is used.

Crowdsourced data has recently received a lot of attention
for HD map updates, as shown in [17] and [18]. Crowd-
sourced data is road observation data acquired by low-cost
crowdsourcing devices, which commonly contain a low-cost
camera and a global navigation satellite system (GNSS) sensor
[19]. Crowdsourcing devices are mounted on cars that traverse
the same routes regularly, making a vast quantity of envi-
ronmental data freely accessible. The main disadvantage of
crowdsourcing data is its considerable uncertainty, particularly
in complicated moving circumstances [5]. Furthermore, as the
vehicle population increases, the throughput of crowdsourced
data drastically decreases due to excessive updates [7]. From
[20], due to the imbalance in the dataset, [21] proposed an
HD-Map-guided rapidly-exploring random tree (HDM-RRT)
by combining an HD map and a sampling-based approach
to quickly obtain high-quality and feasible map updates in
complex campus scenarios. However, the authors failed to ex-
plore optimal data source selection schemes in their proposed
scheme. As a result, [22] suggested a reinforcement learning-
based data source selection method (RLSS) for selecting HD
map data sources in vehicular NDN. However, the authors only
addressed data source selection for the HD map distribution
process and not the HD map construction process. Therefore,
deciding on a suitable vehicle to transmit the necessary data
for HD map construction in vehicular NDN environments is
an open and relevant problem.

B. Contributions

In this paper, we present a smart data source selection
scheme for HD map data transmission in vehicular NDN,
called data source optimization with reinforcement learning
(DSORL). The scheme leverages reinforcement learning (RL)
to decide which vehicles should transmit data to the multi-
access edge computing server. We formulate the selection
problem as a Markov decision process and solve it with
deep reinforcement learning (DRL), specifically, the deep
deterministic policy gradient (DDPG) algorithm. The DSORL
framework consists of four key components: state space,
action, policy, and reward to develop a selection policy. To
capture the dynamics of vehicular scenarios, we use factors
such as round-trip time, vehicle speed, driving direction,
and information entropy to represent the state of a data
source. Our reward function evaluates the performance of
the selected data source based on transmission throughput,
data size, and duration. The reward function evaluates the

transmission performance based on throughput, data size, and
duration time. To run DSORL, we simulate a vehicular NDN
environment with the CARLA simulator and robotic operating
system 2 (ROS2), then employ a crowd-sensing paradigm to
continuously collect environmental data using AV sensors in
our environment. We perform extensive simulations to validate
the performance gains achieved by the DSORL scheme. In
particular, the system throughput can increase by 65%–72.68%
compared with other baseline schemes. Also, the proposed
scheme can reduce packet loss rate, transmission data size,
and transmission time by up to 60.6%, 77.5%, and 54.1%,
respectively.

The major contributions of this work are summarized as
follows.

• Our research is one of the first to investigate the use of
a reinforcement learning-based strategy to HD map data
source selection in vehicle NDN scenarios. We propose
the DSORL framework for selecting the appropriate data
source for transmission to MEC servers.

• We formulate the data source selection problem as a
Markov decision process and use a DRL-based approach
to solve it, specifically the DDPG algorithm. To optimize
the selection’s performance, we design a reward function
that takes into account various measurements of data
sources under vehicular NDN conditions.

• We perform extensive simulations to validate the perfor-
mance gains achieved by the DSORL scheme. In particu-
lar, the system throughput can increase by 65%–72.68%
compared with other baseline schemes. Also, the pro-
posed scheme can reduce packet loss rate, transmission
data size, and transmission time by up to 60.6%, 77.5%,
and 54.1%, respectively.

The following is an overview of the paper’s structure. The
system model is described in Section II. Section III presents
DRL-based smart data source selection technique. Section IV
discusses the simulation results and analysis. Finally, Section
V concludes our discussion.

II. SYSTEM MODEL

In this section, we introduce the system model, which
comprises the system overview, network model, and utility
model. The system overview shown in Section II-A presents
a general summary of our vehicular NDN. Sections II-B and
II-C present the network and utility models, which characterize
our work’s modeling preliminaries and objectives. Table I lists
the primary mathematical notations used in the system model
in this paper.

A. System Overview

We consider a hierarchical architecture comprising vehicles,
roadside units (RSUs), and MEC servers for our HD map
update model [23]. In our CARLA environment, we simu-
late multiple vehicles equipped with sensors, communication,
computing, and caching resources. Next, we set RSUs along
the road equipped with sensors such as high-definition cameras
to record environmental data. To ensure adequate computing
resources for HD map construction, each RSU has a MEC

3

server co-located with it. The vehicles take images of their
surroundings at the start of each update period for the HD map
construction process. Furthermore, the RSUs in each target cell
collect vehicle information such as location, speed, sensing
range, wireless transmission capability, computing capability,
and optimized image data size. Using our DRL-based data
source selection algorithm, the MEC server selects a vehicle
from the RSU’s list to engage in data transfer for HD map
construction in each target cell. Next, the RSU broadcasts
the MEC server’s decision to the selected vehicle for image
data transmission, and all surrounding vehicles enter an update
mode. Vehicles with limited computational capability for the

Fig. 1: Vehicular network architecture for our system model.

map data optimization stage rely heavily on the computation
of the surrounding vehicles and only have an update mode tog-
gled on at any target cell. Fig. 2 shows the vehicular network
architecture with our proposed DSORL scheme. Additionally,
we rely on the RSU to perform the image data collection if
no high computational capacity vehicles are available. Also,
vehicles leaving the target cell should transmit intermediate
map data to the current RSUs via wireless links, which forward
the map data to other RSUs via wired fronthaul connections
for easy access.

B. Network Model

We consider a population of V vehicles, U RSUs, and
M MEC servers, such that V = {1, 2, . . . , V }, U =
{1, 2, . . . , U}, M = {1, 2, . . . ,M} denote a set of vehicles,
RSUs, and MEC servers, respectively. Let N represent the
total number of target cells C for our environment, such
that N = {1, 2, . . . , N}. We characterize any given target
cell n, n ∈ N with a sensing range Sn that is smaller than
the overall cell range S̄. We assume that the traffic density
for n is σn (in vehicles/meter) [24] and the quantity of raw
environmental data (in bits) is Q, as such, there will be σnS̄
vehicles in n with Qn environmental data at given time t.
Let vn, v ∈ V and un, u ∈ U represent vehicle v and RSU u
belonging to target cell n, such that vn comprises a constant
velocity av during one update period T , a sensing range Sv ,
and a computing power Fv (CPU cycles/bits). We distinguish
un by its sensing range Su and computing power Fu. The

TABLE I: List of major symbols and their definitions.

Symbols Definition
V Set of vehicles
U Set of RSUs
M Set of MEC servers
v, v ∈ V vehicle v
u, u ∈ U RSU u
m,m ∈ M MEC server m
N Target cells
K Sub-division of target cell N into
n, n ∈ N target cell n
k, k ∈ K k-th sub-division of target cell K
S Sensing range
F Computing power
Q Raw environmental data
L Coordinate location
d Distance
av Velocity of vehicle v
Π Transmission data
R Wireless transmission rate
tRTT Round-trip time
H(Q..) Information entropy from data Q..

MEC server m ∈ M has computing power Fm for the
HD map construction process. Furthermore, we compute the
driving direction of vn with respect to the x-axis and with n
starting from zero. We use Lvn to represent the initial x-axis
coordinate of vn and Lu

vn is the x-coordinate of RSU u to
which vn belongs.

In our environment, we examine each vehicle’s perceivable
region to determine its location data. For example, vn has a
perceivable area of [max{0, Lvn − Sn}, Sn + Lvn] in n. For
one update period, the real localization information of each
vehicle in n with cached data is [0, Sn + Lvn], and the data
of all other vehicles in C is [0, S̄]. Suppose that the target
cell can be subdivided into K sub-regions of equal length
S̄/K and containing the same quantity of environmental data
as Q/K. We propose a set of binary sensing variables Ŝ to
indicate whether vehicles or RSUs can detect kth sub-regions
in real time or store the kth environmental data. Ŝ = 1 suppose
vn can detect kth region in real time or has kth stored the
environmental data, otherwise Ŝ = 0. As a result, we can
express the sensing variable Ŝk for the kth sub-region as

Ŝk =

{
1, Sn + Lvn ≥ k · S̄/K,

0, otherwise.
(1)

Following that, we provide a set of binary optimization
variables X = {xv,k, xu,k}, where xv,k and xv,k determine the
vehicles and RSUs nearest to sub-region k for data collection.
When the vn is within k, xv,k = 1, otherwise xv,k = 0.
Also, we define the term v̄n =

∑V
v=0(xv,k · Ŝv,k), which

comprises the constraint v̄n ≥ 1, indicating that the kth sub-
region contains at least one vehicle capable of data collection
and Ŝv,k is the sensing variable for the kth sub-region to
which vehicle v belongs. Likewise, when there are no vehicles
capable of data collection (v̄n = 0) in k, the RSU collect and
process the environmental data Qu,k. The environmental data
Qk gathered in k is expressed as

Qk =

{
Qv,k = xv,k · Ŝv,k · QK , if v̄n ≥ 1,

Qu,k = xu,k · Ŝu,k · QK , if v̄n = 0,
(2)

4

where Qv,k and Qu,k denote the data from on vn and un,
respectively. Ŝv,k and Ŝu,k represent the sensing variable for
vehicle v and RSU u. The time taken by vehicles and RSUs
to process map data (e.g., run object detection algorithm on
the image data [25]) is defined as

tk =

{
tv,k =

Qv,k·FQv,k

Fv
, if v̄n ≥ 1,

tu,k =
Qu,k·FQu,k

Fu
, if v̄n = 0,

(3)

where FQv,k
and FQu,k

denote the required computing inten-
sity of Qv,k and Qu,k, respectively.

Due to vehicle mobility, the new coordinate L̂vn of vn after
data collection is provided as

L̂vn = Lvn + av · tQv,k
, (4)

where tQv,k
represents the time taken to collect image data by

vn in k. If vn leaves the target cell, we send its intermediate
results to the closest RSU. Consequently, the corresponding
transmission data ΠQv,k

doubles for every increase in the
number of relay hops. Also, the data ΠQv,k

stays unmodified
at the RSU and is transmitted to the MEC server for HD
map construction. However, if the RSU collects the data,
we denote its transmission data as ΠQu,k

. The corresponding
transmission data ΠQk

can be expressed as

ΠQk
=

ΠQv,k
= Qv,k ·

(
| L̂vn

Ŝ
|+ 1

)
, if v̄n ≥ 1,

ΠQu,k
= Qu,k ·

(
| L̂un

Ŝ
|+ 1

)
, if v̄n = 0,

(5)

where | L̂vn

Ŝ
| represents the number of relay hops.

For the purpose of simplicity, the relocated distance dvn
of vn is ignored throughout the wireless transmission of
intermediate results. However, dvn can be expressed as

dvn =

√
|L̂un

vn − L̂vn |2 + (Dv,u +Hun
)2, (6)

where L̂un
vn = |L̂vn/Ŝ|·Ŝ+Ŝ/2 denotes the current coordinate

of vn in RSU un, Dv,u represents the horizontal distance
between vn and RSU un, and Hun

is the height of RSU un.
Moreover, we express the wireless transmission rate of vn

to RSU un as

Run
vn = bvn · log

(
1 +

Pvn · |hvn |2 · (dvn)−ϱvn

Nvn

)
, (7)

where bvn , Pvn , hvn , ϱvn , and Nvn represent vn’s allocated
bandwidth, transmission power, complex channel fading co-
efficient, path-loss exponent, and noise power, respectively.
Subsequently, we can compute the total transmission time tvn
of vn as

tun
vn = Qv,k · (

1

Run
vn

+
|L̂vn/Ŝ|
Run

), (8)

where Run
is the wired fronthaul link between RSUs for in-

termediate results sharing. Likewise, the wireless transmission
rate of the RSU un to MEC server m can be expressed as

Rm
un

= bun
· log

(
1 +

Pun · |hun |2 · (dun)
−ϱun

Nun

)
, (9)

where bun
, Pun

, hun
, ϱun

, and Nun
represent un’s allocated

bandwidth, transmission power, complex channel fading coef-
ficient, path-loss exponent, and noise power, respectively. The
total transmission time tun

of RSU un as

tmun
= Qu,k · (

1

Ru
vn

+
|L̂vn/Ŝ|
Run

). (10)

Additionally, in one update period T , the round trip time (RTT)
tRTT taken by either vn or un can be expressed as

tRTT =

{
tQv,k

+ tv,k + tun
vn + tmun

, if v̄n ≥ 1,

tQu,k
+ tu,k + tmun

, if v̄n = 0,
(11)

where tQv,k
and tQu,k

denote the time taken to collect data
on vn and un, respectively.

Finally, to determine which car to use for any data trans-
mission, we introduce our vehicle selection function W that
depends on the round trip time tRTT , vehicle’s distance dvn
from the RSU, velocity av , information entropy H(Qv,k), and
transmission data ΠQv,k

1. We express W as

W
(
tRTT , dvn , av, H(Qv,k),ΠQv,k

)
= (12)

λ1tRTT + λ2dvn + λ3av + λ4H(Qv,k) + λ5ΠQv,k
,

where H(Qv,k) = E[− logP (Qv,k)] is the information en-
tropy (e.g., amount of detected objects) of any transmission
data, λ1, λ2, λ3, λ4, and λ5 are scoring values in [0, 1] to
determine the importance of each parameter. For example, we
set a higher value to dvn for vehicle vn closer to RSU un,
and vice versa. However, it is challenging to determine these
scoring values in real-time. As a result, we introduce our smart
data source selection process in Section III.

C. Utility Model

Due to bandwidth limitations, it is necessary to explore
methods for reducing transmission data volume and the num-
ber of transmissions between vehicles and RSUs. Therefore,
the goal of this research is to minimize the total amount of
transmission data and data transmissions under the HD Map
update period T constraints, which can be provided by

min
xv,k,xu,k,Qk

W
(
tRTT , dvn , av, H(Qv,k),ΠQv,k

)
(13a)

s.t. tRTT ≤ T, (13b)
V∑

v=0

(xv,k · Ŝv,k) ≥ 1, (13c)

FQv,k
≤ Fv, FQu,k

≤ Fu, (13d)
H(Qv,k) ≥ 1, (13e)
dvn ≤ dun , (13f)
ΠQv,k

≤ Run
vn , ΠQu,k

≤ Rm
un

, (13g)

where the objective function seeks to minimize the total
amount of data transmissions concerning map data size and
data source selection subjected to the constraints2 of the HD

1We provide detailed description of each parameters in Section III-A.
2It is important to note that we need to normalize these constraints just in

case the value difference is too large, as shown in [22].

5

map update period T . Constraint (13b) stipulates that the entire
HD map period T shall not be exceeded by the round-trip
time tRTT . Next, a sub-region k will always have at least
one entity that is able to collecting and processing HD map
data according to constraint (13c). The third constraint in
(13d) ensures that the amount of resources needed for data
collection and processing does not exceed the capabilities of
the vehicle or RSU. Constraint (13e) requires at least one
detected object in the image data. Finally, constraints (13f) and
(13g) require that the separation distance between the vehicle
and the RSUs is not greater than that of the RSUs and that
the data transmission rate from the vehicle and RSUs not be
greater than the assigned transmission rate, respectively.

III. DEEP REINFORCEMENT LEARNING-BASED DATA
SOURCE SELECTION ALGORITHM

The HD map data source selection scheme’s main objective
is to minimize the latency of HD map updates over the
entire time-slotted system, which may be expressed as (13).
The original optimization problem is extremely complicated
due to the various entities involved (e.g., RSUs, vehicles,
and MEC servers) and the volume of data in the long-
term optimization objective [26]. As a result, using typical
optimization approaches to tackle the problem directly is
challenging. Therefore, we formulate the HD map data source
selection as a Markov decision process (MDP) and provide a
solution using appropriate reinforcement learning methods.

A. Markov Decision Process Formulation

We model the HD map data source selection issue as a MDP
with states, actions, and rewards. MDPs simulate decision-
making in discrete, stochastic, and sequential environments.
The model focuses on an agent (e.g., a decision maker) living
in an environment that changes state at random in response
to the agent’s action choices. The agent’s immediate reward is
affected by the state of the environment, as are the probabilities
of future state changes. The agent’s goal is to choose activities
that maximize a long-term measure of total reward. Our
MDP formulation can be perceived as a stochastic process
comprising {st,at, p(st+1|st,at), rt, st+1}, where at a time
t, st,∀ st ∈ St represents the state space, at,∀ at ∈ At is
the action space, rt is the reward, st+1 is the next state, and
p(st+1|st,at) represents the transition probability, respectively
[27]. The return Rt is defined as the total of discount rewards
from the present state to the end state, which can be expressed
as Rt =

∑
t γtr(st,at), where γ ∈ (0, 1) denotes the discount

factor. Based on the following definitions, we proceed to model
the HD map data source selection problem using RL.

The MDP state constantly changes at any given time interval
due to the various entities (e.g., vehicles, RSUs, MEC servers),
entities’ characteristics (e.g., mobility), and data transmissions.
Therefore, we employ an RL approach to solve the MDP
problem with high precision to capture such high dynamics. To
decrease the complexity of our work, we examine only vehicle
data selection and assume the RSU and MEC server locations
stay constant. The RL approach consists of the following
components.

State (st): At each decision time t, the environment’s state
st comprises the set st = {t,ΠQ, A(t), D(t),H} defined in a
particular target cell. The various state entities are explained
as follows.

• t =
{
t1RTT , . . . , t

v
RTT , t

V
RTT

}
represents the total time

required by vehicles to collect and transmit data to the
MEC server. The lower the tRTT , the better the network’s
performance, which improves system latency. The agent
uses this parameter to find a suitable candidate for data
transmission.

• ΠQ =
{
ΠQ1,k

, . . . ,ΠQv,k
,ΠQV,k

}
is the transmission

data from the vehicles. The agent observes the data sizes
and decides the most cost-efficient vehicle suitable for
data transmission.

• A(t) = {a1n , . . . , av, aV } when the data source is a
vehicle, A(t) is the set of driving speeds of the data
sources at time t. For a vehicle vn, av > 0 shows the
same traveling direction between the requested vehicle
and the RSU. Suppose the data source is an RSU, av = 0.
At time t, av < 0 denotes the opposite traveling direction
between the requested vehicle and the RSU. A lower
speed of vn indicates that the data source is more stable
than when it is faster.

• D(t) = {d1n , . . . , dvn , dVn} comprises the distances of
vehicles from the RSU, which can be computed from
(6). For any vn, dvn > 0 indicates that the vehicle is in
front of the RSU, and vice versa. The agent compares
the distances against other vehicles to select a suitable
vehicle for the data transmission process, and the shorter
the distance, the more reliable the data source.

• H = {H(Q1,k), H(Q2,k), . . . ,H(QV,k)} is the infor-
mation entropy contained in any vehicle data, which
helps the agent decide the significance of various vehicle
data. The more items recognized in an image, the more
information it has, making it extremely helpful.

Action (at): We define our action as learning the correspond-
ing importance parameter λ of the state values in a particular
target cell, termed action parameters. Although there are just
two types of data sources (RSUs and vehicles), vehicle mobil-
ity may produce dynamic changes when employed as a data
source, which signifies that the action space varies depending
on the vehicle scenario. However, evaluating vehicle coverage
and RSU in the connection duration time limits the amount
of data sources. For simplicity, we do not consider when the
vehicle leaves the particular target cell. However, we provide
each vehicle the option to determine its action space by using
previous action values stored on the RSU in a target cell or by
using its inherent actions. We begin by calculating the optimal
values for each state s∗t =

{
tmin,Πmin

Q , Amin, Dmin,Hmax
}

based on the preceding state definition. The rank of the chosen
data source with action at may then be determined as follows:

Gvn,t = (14)

λ1
tvRTT

tmin
RTT

+ λ2
dvn
dmin
vn

+ λ3
av

amin
v

+ λ4
H(Qv,k)

Hmax(Qv,k)
+ λ5

ΠQv,k

Πmin
Qv,k

,

where Max{Gvn,t} denotes that the highest rank of data
source vn is chosen when the learned action parameters

6

Fig. 2: DSORL framework with RL-based system and the
Markov decision process.

{λ1, λ2, λ3, λ4, λ5} are applied to the state st values. For
example, consider the round-trip time tRTT of vehicles in (14),
our RL agent seeks to select the vehicle with the shortest tRTT .
As a result, we designed its action to penalize any vehicle with
a high tRTT by choosing a smaller action parameter while
boosting others with a higher action parameter to enhance the
chances of getting selected. Furthermore, we mention that the
motivation for considering the highest rank of the data source
using Max{Gvn,t} is to encourage the selection of vehicles
closer to the optimal value s∗t . Therefore, by punishing other
vehicles with less optimal values using our action parameters,
we can ensure that the highest-ranked data source will be
the optimal or near-optimal data source. Also, by altering the
action parameters to impact the choice of data sources, we
intend to allow RL-based learning of the consequences of a
broader range of states. The value ranges of action parameters
in this work are {λ1, λ2, λ3, λ4, λ5} = {0, 0.2, 0.6, 0.8, 1} and
{0, 0.25, 0.5, 0.75}. Finally, when the agent takes action at
under state st, the chosen data source is the highest ranked
Gvn,t.

Reward (rt): We return the corresponding reward once
each action is completed to guarantee that the RL model can
learn from previous experience, which characterizes the overall
benefit of an agent adhering to a policy. To comprehend our
agent’s reward, consider the following design principle: 1) in-
crease throughput to the greatest extent practicable. Through-
put is the most essential metric of map data transmission,
which signifies that the vehicle can send and acquire map
data rapidly and effectively, 2) improve transmission time via

de-congestion. The goal is to prevent the added expense of
frequent vehicle requests and data source handovers, which
keeps the connection steady and increases throughput, and
3) reduce transmission delays through efficient data source
selection. HD map updates have higher requirements for
transmission latency in the autonomous driving scenario. Due
to the reduced latency, the data source may provide map data
quickly, decreasing the data package wait time. At time t, the
agent observes state st and then takes action at, following
policy π to obtain a reward rt, which can be expressed as

rt = δ1T (Run
vn)− δ2C(ΠQ)− δ3Ω(tRTT), (15)

where T (Run
vn) is the average transmission throughput, which

is the quantity of data successfully transferred from vehicles to
the RSU in a given period and is commonly measured in bits
per second (bps). The average number of selected transmission
data is denoted by C(ΠQ), and the smaller the C(ΠQ), the
higher the reward. The average RTT time for all packets during
transmission is Ω(tRTT). We employ the impacting factors
δ1, δ2, and δ3 to weigh these metrics, which gives a reasonable
reward rt, and the ranges of these parameters are 1 ≤ δ1 ≤ 2,
0 ≤ δ2 ≤ 2, and 0 ≤ δ3 ≤ 0.5.

B. Value Function and Policy

The RL algorithm evaluates an agent’s performance in
a given state using state-value functions (or action value
functions). We adopt the Bellman expectation equation to
characterize the value function as a discounted expected return
[27], which can be expressed as

We model an MDP to find an optimal policy π∗ that
minimizes the cumulative HD map update’s latency in a given
time-slot T . The agent’s action a accompanies probability
distribution P and parameter θ at state s to evaluate stochastic
policy function πθ at a given time step t, which can be denoted
as

V(st) = rt(st,at) + γ
∑
st

P(st+1|st,at)V(st+1). (16)

Based on the Bellman’s optimal equation, we can compute
the the total maximum discounted reward V∗(st) iteratively
as V∗(st) = max

at

V(st) [27] and the state-value function’s
convergence yield the optimal policy π∗ calculated as π∗ =
argmax

at

V(st).

Usually, we require prior environment information when
employing a model-based reinforcement learning (RL) algo-
rithm. In this work, the reward and transition probabilities
are unknown to our environment. As a result, we implement
a model-free RL algorithm. Q-learning algorithm is a well-
known model-free RL [27]. In a discrete state space MDP, the
agent iteratively learns Q-values stored in the lookup table.
The Q-value Q(st,at) update is shown as [28]

Qt = r(st,at) + γmax
a
Q(st+1, a), (17)

Q(st,at)← Q(st,at) + α(Qt −Q(st,at)). (18)

7

where α ∈ [0, 1] is the learning rate. The error between target
value Qt and predicted value Q(st,at) is expressed as a time-
difference error (TD-error). It is important to note that we can
obtain the optimal Q-values policy upon convergence

C. Deep Reinforcement Learning Based Smart Data Source
Selection Process

Model-free reinforcement learning algorithms can be cat-
egorized into value-based and policy-based techniques based
on policy updates. By learning a value function, value-based
approaches enable agents to choose the best policy (e.g., Q
learning). Also, because the agent has a wide variety of action
parameters to select from, the action space in our work is
continuous. A naive method is to discretize the action space
using a value-based procedure in the continuous domain,
which results in the curse of dimensionality and the loss of
critical information about the structure of the action domain.
The policy-based approaches use parameterized policies to
learn stochastic policies for high-dimensional and continuous
action space problems.

1) Policy based Method: At state st, action at follows
the probability distribution with parameter θ, and we can
express the stochastic policy function πθ at time step t for
the parameterized policy as

π(at|st, θ) = P
{
At = a|St = s, θt = θ

}
. (19)

The objective function J(π) is expressed as

J(π) = Es∼ρπ,a∼πθ
[
∑
t

r(st,at)], (20)

which denotes the expected return, and ρθ represents the policy
π’s discounted state distribution’s probability. The Policy
gradient approach [29] determines the optimal parameter π∗

using the steepest descent and performs parameter updates as
follows:

θt+1 = θt + α∇θtJ(πt). (21)

When the action is a high-dimensional vector, the stochastic
policy gradient (SPG) requires a significant amount of com-
puting to execute action sampling for the stochastic policy.
The deterministic policy gradient (DPG) [30], on the other
hand, explicitly provides deterministic behavior policies while
avoiding frequent action sampling. The DPG objective func-
tion’s gradient is specified as

∇θJ(ϑθ) = Es∼ρϑ [∇θϑθ(s)∇aQϑ(s,a)|a=ϑθ(s)]. (22)

DPG-based approaches, on the other hand, generate de-
terministic strategies without investigating the environment,
which results in an off-policy balance in state-action exploita-
tion and exploration. The behavior policy adopts a stochastic
policy to ensure sufficient action exploration. Conversely,
the target policy is deterministic, which capitalizes on the
full benefit of an efficient deterministic policy. Hence, the
DPG method’s learning structure follows the actor-critic (AC)
approach, as explained in the subsequent paragraph.

2) Actor-Critic Approach: The actor-critic approach inte-
grates the advantages of policy-based and value-based ap-
proaches. In particular, the actor creates action given a state via
a policy function. The critic generates the action value function
and utilizes TD-error (loss function) to analyze the action’s
performance. The actor then employs the DPG technique to
update the policy parameter with the critic’s output. Next,
the critic applies the gradient descent approach to update the
action value function [31].

The function approximators given as θQ and θϑ are applied
as the action-value and policy function. The value function
update is expressed as

φt = rt + γQ(st+1, ϑ(st+1|θϑ))−Q(st,at|θQ), (23)

where the future θQ can be calculated using the expression

θQ(t+1) = θQ(t) + αcφt∇θQQ(st,at|θQ). (24)

Using the DPG approach, the actor updates the policy param-
eters θϑ:

θϑ(t+1) = θϑ(t) + αa∇θϑϑ(st|θϑ)∇aQ(st,at|θQ)|a=ϑ(st).
(25)

3) DSORL: A Deep Deterministic Policy Gradient-based
Data Source Selection Algorithm: Deep deterministic policy
gradient (DDPG) is a DRL technique that combines the
advantages of Q-learning and policy gradient approaches [32].
DDPG is a good choice for our environment with a continuous
action space. It can efficiently solve sequence decision-making
problems due to its ability to directly output actions, con-
vergence stability, lower sensitivity to hyperparameters, and
reduced computational complexity. A typical DDPG comprises
two models: actor and critic, which form its actor-critic
technique. The actor consists of a policy network that uses
states as inputs to produce discrete or continuous actions
instead of a probability distribution over actions. The critic
forms a Q-value network that utilizes the state and action as
input to produce the Q-value for criticizing the performance
of an action with the help of TD-error (loss function). The
actor updates the policy parameter with the critic’s output
via a deterministic policy gradient (DPG) method [33]. DPG
immediately creates a deterministic behavior policy and skips
numerous action sampling. The critic applies a gradient de-
scent method to update the action-value functions.

Usually, applying function approximators directly to the
actor-critic method coupled with the deep neural network is
unstable due to consecutive shared parameters [34]. However,
training a DQN network with experience replay breaks this
shared similarity. Therefore, the authors in [35] introduced a
DDPG algorithm that combines the advantages of the actor-
critic approaches and DQN with experience replay, which
efficiently runs over the continuous action spaces.

Experience Replay: As a result of the agent and environment
interactions, the data tuples (st,at, rt, st+1) is produced and
stored in replay a buffer B. In addition, the critic and actor
randomly utilize a minibatch b sample (sb,ab, rb, sb+1) from
the buffer for the value function and policy function parameter
updates.

8

Algorithm 1: DSORL: DDPG-based algorithm for
smart data source selection process

input: actor ϑ(st|θϑ), critic Q(st,at|θQ), learning
rates: αa, αc, discount parameter γ, smooth
update τ , and buffer D;

1 Initialize θϑ, θQ, θϑ
′ ← θϑ, and θQ

′ ← θQ;
2 void execute_DSORL(states):
3 for epoch n = 0; n ≤ N ; n++ do
4 Initialize a random process M;
5 Initialize initial state s0;
6 for period t = 0; t ≤ T ; t++ do
7 Select an action at = ϑ(st|θϑ) +Mt;
8 Execute at, st+1, and rt;
9 Store (st,at, rt, st+1)→ D;

10 Sample a random d from D;
11 Initialize TD-error: ϑat =

rt + γQ(st+1, ϑ(st+1|θϑ))−Q(st,at|θQ);
12 Update critic:

θQt+1 = θQt + αc
1
dϑat∇θQQ(st,at|θQ;

13 Compute policy gradient:
14 J =

1
d

∑T
t ∇aQ(st,at|θQ)|a=ϑ(st)∇θϑϑ(st|θϑ);

15 Update actor: θϑt+1 = θϑat + αa∇θϑJ ;
16 Update target network:
17 θϑ

′ ← τθϑ + (1− τ)θϑ
′

18 θQ
′ ← τθQ + (1− τ)θQ

′
;

19 end
20 end
21 return
22 Function main():
23 Initialize CARLA_env;
24 Generate traffic flows

/* transmit environmental data */
25 data sources[] = run carla_ros_bridge();
26 execute_DSORL(data sources);
27 return

Target Network: In the work [36], the authors proved that
Q-learning is unstable when directly implemented with deep
neural networks due to parameter sharing between the target
network and the predicted network. As a result, we use
replicates of actor ϑ′(st|θϑ

′
) and critic network Q′(s, a|θQ′

)
to evaluate the target value. Additionally, soft updates to target
network weights are applied to improve the training stability.
Finally, Algorithm 1 presents the DDPG-based algorithm to
our DSORL approach.

IV. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first introduce the system configuration
for our experiments in Section IV-A. Secondly, we present
the performance metrics and experiment benchmarks for the
basis of our experiment in Section IV-B. Finally, we con-
duct comprehensive experiments to evaluate the performance
improvements of the proposed mechanism and validate our
results in Section IV-C.

A. System Configuration

Fig. 3 shows our vehicular NDN environment with our
proposed data source selection scheme. In Fig. 3, we create
multiple vehicles that send data transmission requests to the
MEC server, which comprises the DSORL algorithm. Also,
Fig. 3 shows a sample DSORL code running on the MEC
server to select vehicles suitable for data transmission.

Fig. 3: CARLA vehicular NDN environment setup with
DSORL process

We conduct the research using the Python 3.8 environment
on a Core i7 CPU machine with a 3.9GHz clock speed and
64GB of RAM. Using the CARLA simulation environment,
we deploy the proposed DSORL algorithm for HD map
updates in vehicular settings. CARLA facilitates the creation,
training, and validation of autonomous driving systems and
provides open digital assets (urban layouts, buildings, and
vehicles), open-source protocols, and technologies. The sim-
ulation platform provides dynamic sensor packages, ambient
conditions, comprehensive control of static and dynamic ac-
tors, and more. We employ a multilane urban traffic flow
vehicle trajectory, including vehicles, pedestrians, crossings,
cross traffic, traffic laws, and other complexities that dif-
ferentiate urban driving from track racing. In addition, we
connected a robot operating system (ROS) with CARLA
(ROSbridge) to simulate computations on multiple vehicles
and RSUs, such as router and RSU connections, HD map
data collection, optimization, and construction. Using ROS,
vehicles in our CARLA environment can also execute com-
plicated algorithms, such as the YOLOX object detection
algorithm [25]. Multiple Nvidea Jetson AGX models with a
high processing capability are utilized on the MEC server for
HD map creation and dissemination. Also, we assume the
P2P link latency between the router, vehicles, RSU, and MEC

9

TABLE II: Experiment Parameter List

Parameters Value
Number of vehicles 50
Number of RSU 20
Number of routers 10
MEC servers 5
Communication range 200− 300m
P2P link delay/ bandwidth 10ms/200Mbps
CARLA version 0.9.12
Environment setting Town 1
Traffic 50 pedestrians/30 cyclists
Road speed 30− 60m/s
Learning rate αa, αc 0.001
Impact factors {δ1, δ2, δ3} 1, 0.5, and 0.5
Discount factor γ 0.9
Soft update parameter τ 0.01
Size of replay buffer and mini-batch 1000 and 64
Transportation protocol IEEE 802.11ac
Map data size 50− 400MB

server to be 10 milliseconds with a bandwidth of 200 Mb/s.
Then, using ROSbridge, we transmit the vehicle data from
CARLA, including the number of vehicles, driving direction,
speed, and road network. In addition, we implement our
DRL method using the OpenAI Gym [36] tools. To boost
the efficiency of HD map transmission, we employ the IEEE
802.11ac protocol to send the map data. Table II presents the
parameter values in detail.

B. Performance Metrics and Experiment Benchmarks

In this part, we introduce the prerequisites for Section
IV-C, including baseline schemes and performance metrics.
The experiment baseline schemes and performance metrics
describe how the many associated approaches for this topic
were selected and the measurement metrics utilized to get
these findings, respectively.

1) Baseline schemes (Benchmarks): To show the perfor-
mance of our proposed DSORL scheme, we implement the
three equivalent baseline schemes listed below:

1) RLSS Technique: This approach employs a double deep
Q-network (Double DQN) learning-based architecture
to train a neural network as an agent to decide on
data source selection to improve HD map update action
performance concerning latency, throughput, and packet
loss.

2) HDM-RTT: This technique combines an HD map and a
random tree sampling-based algorithm to quickly obtain
high-quality and feasible map trajectories in complex
campus scenarios.

3) Pro-RTT: In this system, the vehicle employs the
probability-based handover approach to choose a new
data source by monitoring the RTT, which decreases the
frequency of handovers.

2) Metrics of Performance:: To evaluate the performance
of our proposed DSORL scheme, we employ the following
performance metrics:

1) Throughput: The amount of successfully received map
data divided by the transmission time is referred to as
throughput. This metric applies to the overall stages
involved in our latency optimization scheme.

2) Transmission Time: This is the time it takes from the
start of a map transmission to the finish, including data
collection, object detection, data transfer, and HD map
update.

3) Packet Loss Rate: This is derived by dividing the number
of lost packets by the total number of packets sent.

4) Handover Times: This metric displays how many times
the RSU exchanges data sources throughout the HD map
transmission procedure. Data transmission efficiency
will be reduced if data sources are switched often.

C. Implementation Discussions

In this section, we present and explain the various results
obtained in our experiment using the previously introduced
baseline schemes and performance metrics.

1) Convergence Analysis: In this experiment, we evaluate
the convergence performance of our proposed DSORL method
for smart data source selection with a greedy approach (GA),
deterministic policy gradient (DPG), and Double DQN, taking
into account normalized reward and variable learning rates, as
seen in Fig. 4. Fig. 4a depicts the performance of DSORL,
Double DQN, DPG, and GA based on normalized reward
convergence, and Fig. 4b shows the impact of varied learning
rates on the convergence of the DSORL algorithm. Accord-
ing to Fig. 4a, all algorithms converge, with the proposed
algorithm achieving the fastest convergence at around 450
epochs and the highest normalized reward at almost 0.95.
The observed trend can be attributed to DSORL properties
that significantly improve the learning process. For example,
DSORL uses deep neural networks, allowing it to handle high-
dimensional observation spaces compared to the similar ar-
chitecture in DPG. Additionally, DSORL outperforms Double
DQN due to its policy-based algorithm, which can handle both
continuous and discrete action spaces and is less sensitive
to hyperparameters. Moreover, DSORL uses a single neural
network and is less prone to convergence issues, while Double
DQN requires two separate networks and can have difficulty
converging. Furthermore, GA chooses actions greedily, which
results in the worst convergence with a normalized reward
of around 0.65. GA appears to be appropriate for nonlinear
integer programming (NLIP) problems that cannot capture the
high dynamics of the MEC system.

We examine the convergence of the proposed DSORL
algorithm, with the fastest convergence and the largest reward
value, using several learning rates such as α = 0.1, α = 0.01,
α = 0.001, and α = 0.0001. The convergence for each
learning rate is shown in Fig. 4b, with α = 0.001 achieving the
maximum reward. We can conclude that using α = 0.001 as
the learning rate for our suggested method results in improved
convergence. However, this is not true in every circumstance
because the choice of α is dependent on the algorithm and the
environment.

2) Average Throughput Analysis: We first discuss the im-
pact of the DRL algorithm on data source selection, which
allows the DSORL scheme to adapt to the dynamic and
complex nature of vehicular NDN. The DRL algorithm’s
ability to learn from the system’s current state, considering

10

(a) Reward convergence (b) Varied learning rates

Fig. 4: Convergence Analysis

factors such as latency, throughput, and packet loss, allows it to
select suitable vehicles for HD map data transmission to MEC
servers, thereby optimizing the performance of the vehicular
NDN environment. The effectiveness of the DSORL method
is demonstrated through a comparison with various baseline
schemes (RLSS, Pro-RTT, and HDM-RTT) in terms of average
throughput performance for a varying number of vehicles, as
shown in Fig. 5a. As seen in Fig. 5a, increasing the number
of vehicles decreases the average throughput of the system.
However, the DSORL scheme significantly outperforms other
baseline systems, owing to reduced latency, packet loss, and
bandwidth utilization resulting from fewer data transmissions.
For example, when the number of vehicles is 10 − 30, the
median average throughput is around 8.2, 15.8, 20.5, and 35
(Mb/s) in the corresponding HDM-RTT, Pro-RTT, RLSS, and
DSORL schemes, respectively.

Similarly, Fig. 5b shows the average throughput with time.
As shown in Fig. 5b, the average throughput decreases with
time. DSORL achieves a higher throughput, while all baseline
schemes maintain a relatively steady state. Considering 100s
to 200s duration, DSORL obtains an average throughput of
56.5 (Mb/s), RLSS, HDM-RTT, and Pro-RTT, and 39, 30,
and 20 (Mb/s), respectively. Our detailed experimental results
demonstrate that the proposed DSORL scheme effectively
optimizes data source selection for HD map data transmission
in vehicular NDN environments. The method’s RL-based MDP
formulation and adaptive capabilities allow it to outperform
existing baseline schemes, making it a promising solution for
real-world vehicular network applications.

3) Packet Loss Analysis: In this section, we highlight the
impact of our DSORL algorithm on minimizing packet loss
in the data source selection process. The DSORL algorithm’s
ability to learn from the system’s current state, considering
factors such as network congestion and interference between
vehicles, allows it to select suitable vehicles for HD map data
transmission to MEC servers, thereby reducing the packet loss
rate.

To demonstrate the effectiveness of the DSORL method in
minimizing packet loss, we compare it with various baseline
schemes (RLSS, Pro-RTT, and HDM-RTT) in Fig. 6a. Fig. 6a
shows the average packet loss rate for each scheme, revealing
two important observations:

1) the DSORL scheme significantly outperforms other
baseline systems, and

2) when the number of vehicles exceeds 20, the packet
loss rate of RLSS, Pro-RTT, and HDM-RTT schemes

(a) Throughput (Mb/s) vs vehicles (b) Throughput (Mb/s) vs time (s)

Fig. 5: Throughput analysis

increases substantially compared to the DSORL.

For example, the average packet loss rate for DSORL, RLSS,
Pro-RTT, and HDM-RTT schemes is 4.95%, 8.95%, 12.5%,
and 15.65%, respectively. The superior packet loss rate of
DSORL can be attributed to its ability to reduce network con-
gestion, thereby improving data transfer quality and mitigating
interference between multiple vehicles in the environment. Our
proposed DSORL scheme is highly effective in optimizing
data source selection for HD map data transmission in ve-
hicular NDN environments, particularly regarding packet loss
rate. The RL-based MDP formulation and adaptive capabilities
allow the DSORL method to outperform existing baseline
schemes, making it a promising solution for real-world ve-
hicular network applications. The superior performance of
DSORL in minimizing packet loss rate highlights its practical
implications and relevance for real-life scenarios, where main-
taining a low packet loss rate is crucial for ensuring reliable
communication and data transfer in vehicular networks.

4) HD Map Data Size Analysis: In this section of the
experiment, we investigate further the impact of HD map data
size on transmission time by comparing the proposed DSORL
method with various baseline techniques (RLSS, Pro-RTT,
and HDM-RTT). We present the transmission time for each
baseline system when the number of vehicles is 20, and the
data size varies, as shown in Fig. 6b. From our analysis, we
make two key observations:

1) the DSORL scheme consistently outperforms the other
baseline systems across different data sizes; and

2) as the data size increases, the transmission time for the
DSORL method grows slower than the other baseline
schemes.

The DSORL method’s superior performance can be attributed
to its integrated image data optimization, which reduces the
amount of data transmitted and, consequently, the transmission
time. This approach is particularly crucial in NDN vehicular
scenarios, where data size significantly impacts transmission
time performance. For example, when the data size increases
from 50MB to 200MB, the median transmission time rises by
32, 91, 132, and 145s for the DSORL, RLSS, Pro-RTT, and
HDM-RTT schemes, respectively. Our analysis demonstrates
the practical relevance of the proposed DSORL method in
real vehicular network environments, as it can effectively
reduce transmission time while maintaining high-quality data
transfers. This process is particularly significant for ensuring
the efficiency and reliability of HD map transmissions in

11

(a) Packet loss rate (%) (b) Transmission data size (MB/s)

Fig. 6: Packet loss rate and transmission data size

autonomous driving scenarios.
5) Transmission Time and Handover Count Analysis: In the

following result discussion, we examine how well the DSORL
scheme performs compared to different baseline techniques,
focusing on transmission time and handover count of different
vehicle densities. Figs. 7 and 7b depict the handover count
and transmission time of each method in these aspects, re-
spectively. Our analysis leads to three critical observations:

1) the DSORL scheme demonstrates superior performance
compared to the other baseline schemes;

2) as the number of vehicles increases, the transmission
time and handover count in RLSS, Pro-RTT, and HDM-
RTT schemes show a significant rise, whereas the
DSORL method remains relatively stable; and

3) there is a direct correlation between handover count
(number of data source switches) and transmission data
size on transmission time, which further validates the
effectiveness of our proposed DSORL scheme.

The primary reason behind DSORL’s superior performance
lies in its ability to minimize the number of handovers, thereby
increasing connection stability. Our DSORL approach achieves
this reduction, which effectively reduces network congestion
and improves data transmissions. In real-world vehicular net-
work environments, minimizing handovers is essential for
maintaining a stable connection and enabling efficient data
transmission, particularly in dense traffic scenarios.

Furthermore, to provide more context, let us consider an
example with 20 vehicles in the environment. The average
handover count for DSORL, RLSS, Pro-RTT, and HDM-RTT
systems is 4.9, 9.2, 12.7, and 16.5, respectively. The average
transmission time for DSORL, RLSS, Pro-RTT, and HDM-
RTT schemes is 4.27, 8.6, 14.7, and 19.8s, respectively. These
results further emphasize the practical relevance of the DSORL
scheme and its potential to optimize HD map transmissions in
autonomous driving scenarios.

6) Communication Cost Analysis: In this section, we ana-
lyze the impact of the number of vehicles and available band-
width on the communication cost of our proposed DSORL
scheme, as illustrated in Fig. 8a. The communication cost is
a crucial factor for evaluating the effectiveness of DSORL in
real-world vehicular network scenarios. From Fig. 8a, we can
derive three significant observations:

1) the communication cost of DSORL increases with the
growth in the number of vehicles,

2) the communication cost escalates as the bandwidth de-
creases, and

(a) Handover count (b) Transmission time (s)

Fig. 7: Handover count and transmission time (s)

(a) Communication cost (b) Transmission data vs speed

Fig. 8: Communication cost and speed impact

3) the DSORL scheme can effectively manage the com-
munication cost under various bandwidths, maintaining
acceptable performance even at lower bandwidths.

This analysis demonstrates the practical implications of the
DSORL scheme in real-world vehicular network environ-
ments.

Bandwidth plays a critical role in the map update process, as
limited bandwidth may lead to increased communication costs,
impacting the system’s overall performance. For instance,
when there are 20 vehicles, the communication cost of DSORL
is 2.4, 4.7, 46.9, and 468.8ms at 100, 10, and 1Mb bandwidths,
respectively, when considering different bandwidths. As a
result, we employ the IEEE 802.11ac standard, which offers
higher data rates, instead of the IEEE 802.11p (3 Mbit/s),
to ensure that the HD map update process in DSORL does
not adversely affect the system’s performance. These insights
help demonstrate the robustness and adaptability of DSORL
in practical vehicular network environments, emphasizing its
potential to manage communication costs effectively and
maintain satisfactory performance under different conditions.

7) Vehicle Speed Analysis: To further investigate the ef-
fectiveness of the DSORL scheme, we analyze the impact of
vehicle driving speed on transmission data size for various
baseline approaches. Fig. 8b shows the relationship between
transmission data size and vehicle speed, ranging from 10 to
60m/s for 30 vehicles. The following key observations can be
made:

1) The DSORL scheme consistently outperforms the other
baseline methods at various speeds, demonstrating its
adaptability and effectiveness in dynamic vehicular net-
work scenarios.

2) As vehicle speed increases, the transmission data size
decreases for all schemes. This observation highlights
the importance of considering vehicle speed as a fac-

12

tor influencing data transmission performance in NDN
vehicular environments.

3) A substantial reduction in transmission data size is
observed for all baseline methods at a speed of 30m/s.
For instance, the transmission data sizes for RLSS, Pro-
RTT, and HDM-RTT methods are 182, 138, and 120MB,
respectively. However, the DSORL scheme maintains a
consistent decrease of 207MB, showcasing its robust-
ness in managing transmission data size under varying
speeds.

4) The reduced transmission time and vehicle handovers in
the DSORL scheme allow for a more efficient and stable
data transmission process, regardless of the vehicle’s
speed. This finding emphasizes the practical relevance
of our proposed method in real-world vehicular network
environments.

By incorporating these additional insights, we can conclude
that our discussion highlights the versatility and effectiveness
of the DSORL scheme in managing the complexities of real
vehicular network scenarios.

V. CONCLUSION

In this study, we designed and implemented a smart data
source selection scheme for HD map updates in vehicular
NDN scenarios. We created a vehicular NDN environment
with the CARLA simulator and ROS2 to collect environmental
data using AV sensors. Next, considering our vehicular NDN’s
dynamic and complex nature, we formulated the data source
selection problem as an MDP and solved it using a DRL-based
approach. For simplicity, we termed our proposed scheme
DSORL, which selects suitable vehicles for HD map data
transmission to MEC servers. DSORL takes advantage of the
NDN architecture to effectively handle large-scale HD map
delivery in vehicular scenarios and selects suitable data sources
in real-time to stay current with dynamic and complicated
environments. The experiment results indicated that our sug-
gested method outperformed existing baseline schemes across
all performance criteria in the evaluation. For instance, the
system throughput increases by 65%–72.68% compared to
other baseline systems. Similarly, the proposed approach can
minimize packet loss rate, data size, and transmission time by
up to 60.6%, 77.5%, and 54.1%, respectively.

REFERENCES

[1] L. Liu, Y. Zhou, V. Garcia, L. Tian, and J. Shi, “Load aware joint comp
clustering and inter-cell resource scheduling in heterogeneous ultra dense
cellular networks,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 3, pp. 2741–2755, Nov. 2017.

[2] S. Bijjahalli and R. Sabatini, “A high-integrity and low-cost navigation
system for autonomous vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 1, pp. 356–369, Dec. 2019.

[3] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li,
A. Afanasyev, and L. Zhang, “An overview of security support in named
data networking,” IEEE Communications Magazine, vol. 56, no. 11, pp.
62–68, Nov. 2018.

[4] D. Grewe, M. Wagner, and H. Frey, “A domain-specific comparison
of information-centric networking architectures for connected vehicles,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2372–
2388, Mar. 2018.

[5] M. Amadeo, C. Campolo, and A. Molinaro, “Information-centric net-
working for connected vehicles: a survey and future perspectives,” IEEE
Communications Magazine, vol. 54, no. 2, pp. 98–104, Feb. 2016.

[6] R. W. Coutinho, A. Boukerche, and A. A. Loureiro, “Design guidelines
for information-centric connected and autonomous vehicles,” IEEE
Communications Magazine, vol. 56, no. 10, pp. 85–91, Oct. 2018.

[7] J. Wang, C. Jiang, K. Zhang, T. Q. Quek, Y. Ren, and L. Hanzo,
“Vehicular sensing networks in a smart city: Principles, technologies
and applications,” IEEE Wireless Communications, vol. 25, no. 1, pp.
122–132, Oct. 2017.

[8] Y. Xu, H. Zhou, T. Ma, J. Zhao, B. Qian, and X. Shen, “Leveraging
multiagent learning for automated vehicles scheduling at nonsignalized
intersections,” IEEE Internet of Things Journal, vol. 8, no. 14, pp.
11 427–11 439, Jan. 2021.

[9] W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen,
“Internet of vehicles in big data era,” IEEE/CAA Journal of Automatica
Sinica, vol. 5, no. 1, pp. 19–35, Dec. 2017.

[10] F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui, and X. Shen,
“Cooperative task scheduling for computation offloading in vehicular
cloud,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp.
11 049–11 061, Aug. 2018.

[11] Y. Peng, L. Liu, Y. Zhou, J. Shi, and J. Li, “Deep reinforcement learning-
based dynamic service migration in vehicular networks,” in 2019 IEEE
Global communications conference (GLOBECOM), Dec. 2019.

[12] D. Chen, Y.-C. Liu, B. Kim, J. Xie, C. S. Hong, and Z. Han, “Edge
computing resources reservation in vehicular networks: A meta-learning
approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5,
pp. 5634–5646, May 2020.

[13] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
Feb. 2016.

[14] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask scheduling in
mapreduce with data locality: Throughput and heavy-traffic optimality,”
IEEE/ACM Transactions On Networking, vol. 24, no. 1, pp. 190–203,
Nov. 2014.

[15] P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and K. Wang,
“Traffic-aware geo-distributed big data analytics with predictable job
completion time,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 28, no. 6, pp. 1785–1796, Nov. 2016.

[16] A.-C. G. Anadiotis, G. Morabito, and S. Palazzo, “An sdn-assisted
framework for optimal deployment of mapreduce functions in wsns,”
IEEE Transactions on Mobile Computing, vol. 15, no. 9, pp. 2165–2178,
Nov. 2015.

[17] K. Jo, C. Kim, and M. Sunwoo, “Simultaneous localization and map
change update for the high definition map-based autonomous driving
car,” Sensors, vol. 18, no. 9, p. 3145, Sep. 2018.

[18] B. Camburn, R. Arlitt, D. Anderson, R. Sanaei, S. Raviselam, D. Jensen,
and K. L. Wood, “Computer-aided mind map generation via crowdsourc-
ing and machine learning,” Research in Engineering Design, vol. 31,
no. 4, pp. 383–409, Oct. 2020.

[19] K. Kim, S. Cho, and W. Chung, “Hd map update for autonomous driving
with crowdsourced data,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1895–1901, Feb. 2021.

[20] J. Leng, G. Ruan, Y. Song, Q. Liu, Y. Fu, K. Ding, and X. Chen,
“A loosely-coupled deep reinforcement learning approach for order
acceptance decision of mass-individualized printed circuit board man-
ufacturing in industry 4.0,” Journal of cleaner production, vol. 280, p.
124405, 2021.

[21] X. Guo, Y. Cao, J. Zhou, Y. Huang, and B. Li, “Hdm-rrt: A fast hd-
map-guided motion planning algorithm for autonomous driving in the
campus environment,” Remote Sensing, vol. 15, no. 2, p. 487, 2023.

[22] F. Wu, W. Yang, J. Lu, F. Lyu, J. Ren, and Y. Zhang, “RLSS: A
reinforcement learning scheme for hd map data source selection in
vehicular ndn,” IEEE Internet of Things Journal, Nov. 2021.

[23] S. Arshad, M. Sualeh, D. Kim, D. V. Nam, and G.-W. Kim, “Clothoid: an
integrated hierarchical framework for autonomous driving in a dynamic
urban environment,” Sensors, vol. 20, no. 18, p. 5053, Sep. 2020.

[24] M. Wu, D. Ye, J. Kang, and R. Yu, “Collaborative data collection with
hybrid vehicular crowd sensing in smart cities,” in 2017 9th Interna-
tional Conference on Wireless Communications and Signal Processing
(WCSP), Oct. 2017.

[25] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” arXiv preprint arXiv:2107.08430, Jul. 2021.

[26] X. Lu, L. Xiao, P. Li, X. Ji, C. Xu, S. Yu, and W. Zhuang, “Reinforce-
ment learning based physical cross-layer security and privacy in 6g,”
IEEE Communications Surveys Tutorials, pp. 1–1, 2022.

[27] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, Nov. 2018, vol. 2, no. 1.

13

[28] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3, pp. 279–292, May 1992.

[29] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[30] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. PMLR, Jan. 2014, pp. 387–395.

[31] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, Nov. 1999.

[32] H. Peng and X. S. Shen, “DDPG-based resource management for
MEC/UAV-assisted vehicular networks,” in 2020 IEEE 92nd Vehicular
Technology Conference (VTC2020-Fall). IEEE, Oct. 2020, pp. 1–6.

[33] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems. Citeseer, Jan. 2000, pp.
1008–1014.

[34] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel ddpg method
with prioritized experience replay,” pp. 316–321, Oct. 2017.

[35] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, Sep. 2015.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

Daniel Mawunyo Doe (Member, IEEE) received
the B.S. in computer engineering from the Kwame
Nkrumah University of Science and Technology,
Kumasi, Ghana and M.S. in computer science and
engineering at the University of Electronic Science
and Technology of China (UESTC). He is currently
working toward a PhD degree in the Electrical and
Computer Engineering Department, University of
Houston, USA. His general research interests in-
clude game theory, blockchains, federated learning,
wireless networks, big data, and cloud computing.

Dawei Chen (Member, IEEE) received the B.S.
degree from the Huazhong University of Science and
Technology, Wuhan, China, in 2015, and the Ph.D.
degree from the University of Houston, Houston,
TX, USA, in 2021. After this, he joined Toyota
Motor North America, InfoTech Labs, where he is
a principal researcher. His research interests include
edge/cloud computing, federated learning/analytics,
connected vehicles, and wireless networks.

Kyungtae Han (Senior Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from The University of Texas at Austin, Austin, TX,
USA, in 2006. He is currently a Senior Principal
Scientist with the InfoTech Labs, Toyota Motor
North America, Mountain View, CA, USA. Prior
to joining Toyota, he was a Research Scientist with
Intel Labs, Santa Clara, CA, USA, and a Director
of Locix Inc., San Bruno, CA, USA. His research
interests include cyber–physical systems, connected
and automated vehicle techniques, and intelligent

transportation systems.

Haoxin Wang (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
The University of North Carolina at Charlotte in
2020, and the B.S. degree in control science and
engineering from Harbin Institute of Technology
in China in 2015. From 2020 to 2022, he was a
Research Scientist at Toyota Motor North America,
InfoTech Labs. He is currently an Assistant Pro-
fessor in the Department of Computer Science at
Georgia State University, and leads the Advanced
Mobility & Augmented Intelligence (AMAI) Lab.

His current research interests include mobile AR/VR, autonomous driving,
digital twins, and edge intelligence.

Jiang Xie (Fellow, IEEE) received the B.E. degree in
electrical and computer engineering from Tsinghua
University, Beijing, China, the M.Phil. degree in
electrical and computer engineering from the Hong
Kong University of Science and Technology, and the
M.S. and Ph.D. degrees in electrical and computer
engineering from the Georgia Institute of Technol-
ogy. She joined the Department of Electrical and
Computer Engineering, University of North Carolina
at Charlotte (UNC-Charlotte) as an Assistant Pro-
fessor in August 2004, where she is currently a

Full Professor. Her current research interests include resource and mobility
management in wireless networks, mobile computing, Internet of Things, and
cloud/edge computing. She received the U.S. National Science Foundation
NSF Faculty Early Career Development (CAREER) Award in 2010, the Best
Paper Award from IEEE Global Communications Conference in 2017, the Best
Paper Award from IEEE/WIC/ACM International Conference on Intelligent
Agent Technology in 2010, and the Graduate Teaching Excellence Award from
the College of Engineering at UNC-Charlotte in 2007. She is on the editorial
boards of IEEE Transactions on Wireless Networking, IEEE Transactions on
Sustainable Computing, and Journal of Network and Computer Applications
(Elsevier).

Zhu Han (Fellow, IEEE) received the B.S. degree
in electronic engineering from Tsinghua University,
in 1997, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Maryland, College Park, in 1999 and 2003, respec-
tively. From 2000 to 2002, he was an Ramp;D
Engineer of JDSU, Germantown, Maryland. From
2003 to 2006, he was a Research Associate at the
University of Maryland. From 2006 to 2008, he
was an assistant professor at Boise State University,
Idaho. Currently, he is a John and Rebecca Moores

Professor in the Electrical and Computer Engineering Department as well as
in the Computer Science Department at the University of Houston, Texas. Dr.
Han’s main research targets on the novel game-theory related concepts critical
to enabling efficient and distributive use of wireless networks with limited
resources. His other research interests include wireless resource allocation and
management, wireless communications and networking, quantum computing,
data science, smart grid, security and privacy. Dr. Han received an NSF Career
Award in 2010, the Fred W. Ellersick Prize of the IEEE Communication
Society in 2011, the EURASIP Best Paper Award for the Journal on Advances
in Signal Processing in 2015, IEEE Leonard G. Abraham Prize in the field
of Communications Systems (best paper award in IEEE JSAC) in 2016,
and several best paper awards in IEEE conferences. Dr. Han was an IEEE
Communications Society Distinguished Lecturer from 2015-2018, AAAS
fellow since 2019, and ACM distinguished Member since 2019. Dr. Han is
a 1Science. Dr. Han is also the winner of the 2021 IEEE Kiyo Tomiyasu
Award, for outstanding early to mid-career contributions to technologies
holding the promise of innovative applications, with the following citation:
“for contributions to game theory and distributed management of autonomous
communication networks”.

