
High Definition Map Data Optimization for Autonomous
Driving in Vehicular Named Data Networks

Daniel Mawunyo Doe∗, Dawei Chen†, Kyungtae Han†, Haoxin Wang‡, Jiang Xie§, and Zhu Han∗
∗Electrical and Computer Engineering Department, University of Houston, Houston, TX, USA

†InfoTech Labs, Toyota Motor North America R&D, Mountain View, CA, USA
‡Department of Computer Science, Georgia State University, GA, USA

§Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, NC, USA

Abstract—High-definition (HD) map is an essential building
block in the autonomous driving era, which enables fine-grained
environmental awareness, exact localization, and route planning.
However, because HD maps include rich, multidimensional in-
formation, the volume of HD map data is enormous, making
it expensive and time-consuming to transmit on vehicular net-
works. Therefore, in this paper, we propose a data optimization
scheme for effective HD map updates in vehicular named data
networking (NDN) scenarios. We formulate the HD map data
optimization problem as a convex optimization problem and
solve it with modified convolutional neural networks (CNNs)
from YOLOX’s real-time object detection system. Specifically,
we modify the YOLOX object detection algorithm to detect and
compress redundant pixels in local map data before transmission
to the MEC server. To deploy our proposed scheme, we construct
a vehicular NDN environment for data collection, processing, and
transmission using the CARLA simulator and robot operating
system 2 (ROS2). Extensive simulations show that our proposed
scheme can significantly reduce the transmission data size and
time by 48.25%− 65.78% and 46.85%− 78.84% compared with
state-of-the-art HD map update techniques like RLSS, Pro-RTT,
and Loss-based systems.

Index Terms—High definition map, data optimization, object
detection, named data networking, and vehicular networks.

I. INTRODUCTION

A. Background and Motivation

With the rapid advancement of mobile communications,
vehicular sensing technologies, and autonomous driving, the
Internet of autonomous vehicles (AVs) has become a popular
topic [1], [2]. Recent autonomous vehicles can establish their
precise positions and design collision-free paths using high-
definition (HD) maps. HD maps provide more trustworthy
sensing capabilities and help the autonomous driving decision-
making layer, where latency is essential. However, due to
advanced processing, recent HD map updates suffer from
low latency. For example, the HD map data capacity is
relatively large compared to the typical electronic map, making
it challenging to generate, transmit, or store onboard.

Named data networking (NDN) is a potential future net-
working architecture in which each network component is
considered to be an entity. NDN has tremendous potential for
the automobile network, such as easing user mobility, data
sharing, data naming, name resolution, and a naming-based
route forwarding strategy [3]. NDN can effectively minimize
data retrieval delays due to request aggregation, allowing
vehicles to obtain or exchange data through a single data

connection procedure. However, NDN uses floods to acquire
data, which causes excessive vehicle traffic and high data
collection costs when data quantities are enormous. Therefore,
investigating map data optimization techniques is an important
and relevant problem.

Crowdsourced data has recently garnered much attention for
HD map updates, as seen in [4] and [5]. Crowdsourced data
is road observation data collected by low-cost crowdsourcing
devices, which often include a camera and a global positioning
system (GNSS) sensor [6]. Crowdsourcing devices are put on
automobiles that travel the same routes regularly, making a
massive amount of environmental data publicly available [3]
and [7]. The fundamental downside of crowdsourcing data is
its high level of uncertainty, especially in fast-moving situa-
tions. Also, when the vehicle population grows, the throughput
of crowdsourced data reduces dramatically due to the volume
of data gathered [8].

Vehicle wireless communication, processing, and caching
capabilities have lately improved considerably in [9]. The
HD map update task may be subdivided into several subtasks
and processed via vehicular distributed computing. First, idle
computing resources in vehicles are fully exploited, which
may improve resource usage and cloud server performance.
Second, in vehicular NDN, using vehicles as data collectors
and processors can reduce the transfer of large amounts of raw
environmental data while decreasing overall system latency
[10]. Extensive research has been undertaken on distributed
computing, as shown in [11] and [12]. For example, [11] and
[12] worked on improving input data transfer and task allo-
cation in wired data centers (DCs) to reduce inter-DC traffic,
increase throughput, and reduce delays. Furthermore, reducers
and route selection are adjusted to decrease transmission costs
in wireless sensor networks [13]. However, because the input
data for the HD map update is large, the data transmission
scenarios are not practical for NDN when crowd-sensing is
employed.

Most existing studies on HD map updates have the com-
mon limitation of ignoring the optimization of HD map
data before transmission. This oversight can have significant
consequences, including inaccurate navigation, high resource
utilization, and decreased efficiency and reliability in vehicular
data networks. For example, [14] proposed a probability-
based handover approach to choose a new data source by
monitoring the round-trip time, which decreases the frequency

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

978-1-5386-7462-8/23/$31.00 ©2023 IEEE 4044

of handovers for improved HD map updates. From [15], due to
the imbalance in the dataset, [16] proposed an HD-Map-guided
rapidly-exploring random tree (HDM-RRT) by combining an
HD-Map and a sampling-based approach to quickly obtain
high-quality and feasible map updates in complex campus
scenarios. [17] suggested a reinforcement learning-based data
source selection method (RLSS) for selecting HD map data
sources in vehicular NDN. However, these methods fail to
consider the optimization of HD maps before transmission.
As a result, optimizing HD map data before transmission in
vehicular NDN environments is a problem that needs to be
solved.

B. Contributions

In this paper, we propose an HD map data optimization
approach for autonomous driving in vehicular NDN. First, we
formulate the HD map data optimization problem as a convex
optimization problem and solve it with modified convolutional
neural networks (CNNs) from YOLOX’s real-time object
detection system. Specifically, we modify the YOLOX object
detection algorithm in our map data optimization to detect
and compress superfluous pixels in onboard map data for
transmission to the multi-access edge computing (MEC) server
via the roadside unit (RSU). To deploy our proposed scheme,
we construct a vehicular NDN simulation environment for our
experiment, employing the CARLA simulation environment
combined with the robot operating system 2 (ROS2). And then,
we conduct extensive simulations to confirm the performance
advantages generated by our proposed map data optimization
approach. The significant contributions of this work are sum-
marized as follows:

In summary, the following are the significant contributions
of this paper:

• Our research is one of the first to explore the optimization
of HD map data before transmission in vehicular NDN
scenarios. We propose optimizing the HD map data to
remove unnecessary pixels to reduce data size before
transmission.

• We formulate the HD map data optimization problem as a
convex optimization problem and solve it with modified
convolutional neural networks (CNNs) from YOLOX’s
real-time object detection system.

• We perform extensive simulations to validate the per-
formance gains achieved by our proposed scheme. The
simulation results show that our approach can signif-
icantly reduce the transmission data size and time by
48.25% − 65.78% and 46.85% − 78.84% compared to
state-of-the-art techniques like RLSS, Pro-RTT, and Loss-
based systems.

The following is an overview of the paper’s structure. The
system model is described in Section II. Section III presents
the YOLO-based map data optimization to solve the data size
reduction issue. Section IV discusses the simulation results
and analysis. Finally, Section V concludes our discussion.

Fig. 1: Vehicular network architecture with proposed latency
optimization scheme.

II. SYSTEM MODEL

A. System Overview

We explore a hierarchical architecture consisting of vehicles,
roadside units (RSUs), and MEC servers for our HD map
update model [18]. We simulate several vehicles equipped with
sensors, communication, computation, and caching resources
in our CARLA environment. Then, we install RSUs along
the route with sensors, such as high-definition cameras to
collect environmental data. Each RSU is co-located with a
MEC server to ensure sufficient computational capabilities
for constructing HD maps. Assume that environmental data
are continually gathered and stored locally for a length of
time (i.e., the duration of the HD map update). At the start
of each update period, the vehicles capture images of their
surroundings for constructing HD maps. And then, using
the YOLOX object detection framework, we execute onboard
object recognition on image data acquired by each vehicle. Re-
dundant image pixels with no detection (e.g., bounding boxes),
such as those with roadside trees, sky, clouds, airplanes, distant
buildings, roadside blocks, etc., are compressed to minimize
image data size.

Moreover, each target cell’s RSUs gather vehicle data
such as location, speed, sensing range, wireless transmission
capabilities, computing capability, and optimum picture data
size. The optimized image data from vehicles is transmitted
to a high-capacity MEC server, which processes the data to
construct HD maps for AVs. Vehicles with low computing
capabilities rely significantly on the computation of the sur-
rounding vehicles or RSU for map data optimization and only
have an update mode toggled on at any target cell. Also,
vehicles departing the target cell use wireless networks to
send interim map data to the present RSUs, which is passed
to other RSUs through wired fronthaul links for distributed
map accessibility. The vehicular network architecture with our
suggested map data optimization strategy is shown in Fig. 1.

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

4045

B. Network Model

We consider a population of V vehicles, U RSUs, and
M MEC servers, such that V = {1, 2, . . . , V }, U =
{1, 2, . . . , U}, M = {1, 2, . . . ,M} denote a set of vehicles,
RSUs, and MEC servers, respectively. We assume that the
quantity of raw environmental data (in bits) is Q. Let vn, v ∈ V
and un, u ∈ U represent vehicle v and RSU u belonging
to target cell n, such that vn comprises a computing power
Fv (CPU cycles/bits) and an environmental data Qv . We
distinguish un by computing power Fu and an environmental
data Qu. The MEC server m ∈ M has computing power Fm

for the HD map construction process. Suppose that the target
cell can be subdivided into K sub-regions containing the same
quantity of environmental data as Q/K.

The image data Qk gathered and pre-processed using our
map data optimization technique in the kth sub-region is
expressed as

Qk =

{
Qv,k = xv,k · Ŝv,k · Q

K , if vn ≥ 1,

Qu,k = xu,k · Ŝu,k · Q
K , if vn = 0,

(1)

where Qv,k and Qu,k denote the data from on vn and un,
respectively. xv,k and xu,k determine the vehicles or RSUs
nearest to sub-region k for data collection and pre-processing.
Ŝv,k and Ŝu,k represent the sensing variable for vehicle v and
RSU u. Time tk = {tv,k, tu,k} taken by vehicle vn or RSU
un for map data pre-processing is defined as

tk =

{
tv,k =

Qv,k·FQv,k

Fv
, if vn ≥ 1,

tu,k =
Qu,k·FQu,k

Fu
, if vn = 0,

(2)

where tv,k and tu,k represent the time taken by vn and un,
respectively. FQv,k

and FQu,k
denote the required computing

intensity of Qv,k and Qu,k, respectively.
The corresponding transmission data ΠQk

can be expressed
as

ΠQk
=

ΠQv,k
= Qv,k ·

(
| L̂vn

Ŝ
|+ 1

)
, if vn ≥ 1,

ΠQu,k
= Qu,k ·

(
| L̂un

Ŝ
|+ 1

)
, if vn = 0,

(3)

where ΠQv,k
and ΠQv,k

represent the transmission data from

vn and un, respectively. | L̂vn

Ŝ
| represents the number of relay

hops.
Moreover, we express the wireless transmission rate of vn

to RSU un separated by the distance dvn as

Run
vn = bvn · log

(
1 +

Pvn
· |hvn |2 · (dvn)−ϱvn

Nvn

)
, (4)

where bvn , Pvn , hvn , ϱvn , and Nvn represent vehicle vn’s allo-
cated bandwidth, transmission power, complex channel fading
coefficient, path-loss exponent, and noise power, respectively.
Likewise, the wireless transmission rate of RSU un to MEC
server m separated by distance dun

can be expressed as

Rm
un

= bun
· log

(
1 +

Pun
· |hun

|2 · (dun
)−ϱun

Nun

)
, (5)

where bun
, Pun

, hun
, ϱun

, and Nun
represent RSU un’s allo-

cated bandwidth, transmission power, complex channel fading
coefficient, path-loss exponent, and noise power, respectively.
Additionally, in one update period T , the round trip time (RTT)
tRTT taken by either vehicle vn or RSU un can be expressed
as

tRTT =

{
tQv,k

+ tv,k + tun
vn + tmun

, if vn ≥ 1,

tQu,k
+ tu,k + tmun

, if vn = 0,
(6)

where tQv,k
, tun

vn , tmun
, and tQu,k

denote the time taken to
collect data on vn, transmission time of vehicle vn to RSU
un, transmission time from RSU un to MEC server m, and
data collection time of RSU un, respectively.

C. Utility Model

Due to bandwidth limitations, it is necessary to explore
methods for reducing transmission data volume and the num-
ber of transmissions between vehicles and RSUs. Therefore,
the goal of this research is to minimize the total amount
of transmission data under the HD Map update period T
constraints, which can be provided by

min
Qk

ΠQk
(7a)

s.t. tk < tRTT ≤ T, (7b)
V∑

v=0

(xv,k · Ŝv,k) ≥ 1, (7c)

FQv,k
≤ Fv, FQu,k

≤ Fu, (7d)
H(Qv,k) ≥ 1, (7e)
Qv,k ≤ Q∗

v,k, Qu,k ≤ Q∗
u,k, (7f)

H(Qv,k) = E[− logP (Qv,k)] is the information entropy (e.g.,
amount of detected objects) of any transmission data and
the objective function seeks to minimize the total amount
of data transmissions concerning map data size subjected to
the constraints of the HD map update period T . Constraint
(7b) stipulates that the entire HD map period T shall not be
exceeded by the round-trip time tRTT and map processing
duration tk. Next, sub-region k will always have at least
one entity that is able to collecting and processing HD map
data according to constraint (7c). The third constraint in (7d)
ensures that the amount of resources needed for data collection
and processing does not exceed the capabilities of the vehicle
or RSU. Constraint (7e) requires at least one detected object
in the image data and constraint (7f) states that the optimized
data size {Q∗

v,k, Q
∗
u,k} does not exceed the original data size

{Qv,k, Qu,k}, respectively.
Due to our environment’s complex nature (e.g., real-time

constraints, large amounts of data, dynamic network topology,
and limited network resources), we propose using CNNs to
solve our optimization problem. CNNs can handle complex,
non-linear problems, making them a promising approach for
optimization problems. CNNs can learn patterns and rela-
tionships within the data, allowing for effective optimization.
Additionally, CNNs are highly parallelizable, making them ef-
ficient for solving large optimization problems. Consequently,

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

4046

by modifying the CNNs in YOLOX, we model and enforce
the constraints from our optimization problem to achieve a
near-optimal HD map data optimization.

III. YOLOX-BASED HD MAP DATA OPTIMIZATION

The YOLOX algorithm is the most recent addition to the
YOLO family of algorithms, with image inference time as
quick as 0.007s. YOLOX can process 140 frames per second,
making it adequate for real-time image detection. Due to its
small structure, the weight data file of the YOLOX-S version
is 16 MB, which is one-tenth the size of the YOLO-V5 [19],
making it less resource-intensive and simple to install. The
YOLOX is a one-stage target identification technique based
on regression that divides the input image into N ×N grids.
If the target’s center falls within a specified grid, the grid is
in charge of detecting the target. Furthermore, the YOLOX
employs multi-scale detection technology, which increases the
recognition of objects of varied scales.

A. HD Map Data Optimization with YOLOX

The YOLOX technique normalizes all input images to
640 × 640 pixels. The normalized images are then down-
sampled using the feature extraction network to three scales
of 80 × 80, 40 × 40, and 20 × 20. The resulting feature
maps are numerous times smaller than the original image,
enabling the detection network’s feature description of small
objects to be much more easily acquired. YOLO then uses
a convolutional neural network to predict several bounding
boxes and class probabilities for those boxes to recognize
objects in the downsampled images. Like humans, YOLO can
instantly determine where and what things are within a given
image. As a result, we use YOLOX’s efficient object detection
technology for our data optimization stage. Furthermore, the
proposed HD map data optimization consists of four stages:
HD map object detection, detected image gridding, compute
percentage utilization, and redundant pixel compression. More
particularly, we have

• HD map object detection: We use the YOLOX algorithm
to detect objects in image data recorded by vehicles
or RSUs. YOLO divides the image into grids and then
predicts the positions, sizes, and confidence scores of a set
number of bounding boxes within each grid cell. YOLO,
in essence, predicts the class and likely location of an
object. If the center of an object falls inside a grid cell,
the grid cell’s bounding boxes are in charge of precisely
finding and estimating that object. Each bounding box
will contain five predictions: x-axis, y-axis, width, height,
and confidence. The estimated confidence score reflects
how certain the model is that a class exists within the
bounding box and how well it believes the class fits within
the box, using an Intersection over Union metric.

• Detected image gridding: In this phase, we divide
YOLOX output image into dynamic grids (e.g., 100×100,
50 × 50, and 20 × 20) to apply our pixel compression
technique. Using numerous grids boosts the pixel com-
pression rate but decreases the latency of the proposed

Algorithm 1: HD map data optimization with YOLOX
input : Q: raw image data
output: Q∗: compressed image data
/* finds object in any grid */

1 void compute_object_location(r box,
b box):

2 if b box ≥ r box and b box ≤ r box then
3 {dy,dx} = b box - r box ;
4 else if b box ≥ r box then
5 {dy,dx} = r box - b box ;
6 else if b box ≥ r box and b box ≤ r box then
7 {dy,dx} = b box - b box ;
8 else if b box < r box and b box > r box then
9 {dy,dx} = b box - b box ;

10 return dx × dy;
11 return
/* computes percentage utilization */

12 void compute_p_area(r box, b boxes):
13 r box area = (r box.x1 - r box.x0) × (r box.y1 -

r box.y0);
14 box areas = 0;
15 for box in b boxes do
16 b areas += compute object location(r box,

box);
17 return (b areas/r box area) × 100;
18 end
19 return

compression technique. In this study, we obtained our
best results with a grid size of 100×100 with reasonable
latency and compression rate.

• Compute percentage utilization: At this stage, we cal-
culate the percentage area used by our grids to establish
the best compression rate for that pixel. For example,
suppose a portion of a detected object falls within a grid.
In that case, we compute the area it occupies in the grid
in comparison to the overall area of the grid to obtain
the grid’s percentage utilization. Based on this percentage
utilization, we can estimate the relative importance of
each grid and whether or not to give a compression rate.
In Algorithm 1, we demonstrate how to compute the
percentage utilization and the computation can also be
expressed as

gused = garea–ḡarea, (8)

where gused, garea, and ḡarea denote the area used, total
grid area, and detected object area, respectively.

• Redundant pixel compression: After calculating the
percentage utilization of each grid, we perform pixel
compression on it. For example, a grid (e.g., skies, clouds,
skyscrapers, roadblocks, etc.) with no detected objects
will have a zero percentage utilization, necessitating
greater pixel compression. Grids with identified objects
have a greater percentage utilization, such as 100%,

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

4047

(a) Orginal image (b) 20× 20 optimized image

(c) 50× 50 optimized image (d) 100× 100 optimized image

Fig. 2: HD image data optimization with our modified
YOLOX.

and so do not get any compression. In particular, if
gused < gmax we perform corresponding compression,
where gmax is a defined set of thresholds. Additionally,
we present Algorithm 1 to demonstrate how to compress
the pixels in each grid based on their percentage utiliza-
tion.

Fig. 3 illustrates the proposed image data optimization with
an original and optimized image with varying grid sizes (20×
20, 50 × 50, and 100 × 100). We can observe the detected
object within the bounding boxes, and the pixel compression
is done around the object detection in Figs. 2b, 2c, and 2d.

B. Complexity Analysis of Proposed Scheme

YOLOv3-5 uses an anchor-based mechanism for object
detection, where fixed reference bounding boxes are placed
throughout the image to check if they contain an expected
class. This approach can find more than one object in the same
grid. However, it also has several drawbacks. Optimal anchor
boxes need to be determined through clustering analysis before
training, adding extra time and complexity. The number of
predictions per image is increased, leading to longer infer-
ence times. Finally, the anchor-based mechanism increases
the complexity of the detection head and overall network.
YOLOX, the latest version of YOLO, uses an anchor-free
mechanism, reducing the number of predictions per image
cell from 3 to 1 and simplifying the overall network. Suppose
the time complexity of the YOLOX algorithm is given by
O(Y). Our modification offers an asymptotic time complexity
of O(M×N), where M and N represent the number of rows
and columns of grid shapes. As a result, the time complexity
can be expressed as O(M×N)+O(Y).

Parameters Value
Number of vehicles 10− 50
Number of RSU 20
Number of routers 10
MEC servers 5
Communication range 200− 300m
P2P link delay/ bandwidth 10ms/200Mbps
CARLA version 0.9.12
Environment setting Town 1
Traffic 50 pedestrians/30 cyclists
Road speed 30− 60m/s
Transportation protocol IEEE 802.11ac
Map data size 50− 400MB

TABLE I: Experiment Parameter List

IV. EXPERIMENT RESULTS AND ANALYSIS

A. System Configuration

We conduct the research using the Python 3.8 environment
on a Core i7 CPU machine with a 3.9 GHz clock speed and
64GB of RAM. Using the CARLA simulation environment,
we deploy the proposed latency optimization technique for
HD map updates in vehicular settings. CARLA facilitates the
creation, training, and validation of autonomous driving sys-
tems and provides open digital assets (urban layouts, buildings,
and vehicles), open-source protocols, and technologies. The
simulation platform provides dynamic sensor packages, ambi-
ent conditions, comprehensive control of static and dynamic
actors, and more. We employ a multilane urban traffic flow
vehicle trajectory, including vehicles, pedestrians, crossings,
cross traffic, traffic laws, and other complexities that differenti-
ate urban driving from track racing. In addition, we connected
ROS2 with CARLA (ROSbridge) to simulate computations
on multiple vehicles and RSUs, such as router and RSU
connections, HD map data collection, optimization, and con-
struction. Using ROS2, vehicles in our CARLA environment
can also execute complicated algorithms, such as our improved
YOLOX HD map data optimization. Multiple Nvidea Jetson
AGX models with a high processing capability are utilized on
the MEC server for HD map creation and dissemination. Also,
we assume the P2P link latency between the router, vehicles,
RSU, and MEC server to be 10 milliseconds with a bandwidth
of 200 Mb/s. Then, using ROSbridge, we transmit the vehicle
data from CARLA, including the number of vehicles, driving
direction, speed, and road network. To boost the efficiency of
HD map transmission, we employ the IEEE 802.11ac protocol
to send the map data. Table I presents the parameter values in
detail.

B. Performance Metrics and Experiment Benchmarks

1) Baseline schemes (Benchmarks): To show the perfor-
mance of our proposed latency optimization scheme, we
implement the three equivalent baseline schemes listed below:

1) RLSS Technique: This approach employs a deep rein-
forcement learning-based architecture to train a neural
network as an agent to decide on data source selection to
improve HD map update action performance concerning
latency, throughput, and packet loss.

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

4048

2) Loss-based Approach: This technique forces the vehicle
to switch data sources during an HD map update if
packet loss occurs in the current data source. The authors
seek to achieve high connection usage by filling the
buffer to capacity, which may result in severe packet
loss during handovers.

3) Pro-RTT: In this system, the vehicle employs the
probability-based handover approach to choose a new
data source by monitoring the RTT, which decreases the
frequency of handovers.

2) Metrics of Performance: To evaluate the performance
of our proposed map optimization scheme, we employ the
following performance metrics:

1) Compression Rate: Compression rate, also termed com-
pression power, measures how much a data compression
technique reduces the size of collected data. This metric
applies to our modified YOLOX-based map data opti-
mization technique.

2) Detection Error Rate: This is the percentage of incor-
rectly detected objects in a set of our HD map images
compared to the total number of actual objects detected
by our various grid shapes in those images.

3) Computation Time: Computation time is the amount of
time necessary to complete a computational operation.
In this measure performance study, we take into account
the map data optimization performed on vehicles or the
RSU.

4) Transmission Time and Data Size: This is the overall
amount of time spent on the HD map updating process,
including data collection, data optimization, data trans-
fer, and HD map construction. The transmission data
size represents the average size (Mb) of map data sent
to the RSUs for HD map construction.

C. Implementation Discussions

This experiment discussion investigates how different pixel
compression grid sizes affect computation time and compres-
sion rate. Figs. 3a and 3b depict the compression time and rate
of our suggested picture data optimization strategy. We first
discuss inference and compression time to understand how
computing time is computed. The inference time is the time
it takes YOLO to recognize an item, and the compression
time is the time it takes to compress the redundant picture
pixels. Fig. 3a shows that the inference time is constant at
0.39s in all grid sizes, although the compression time varies.
The 10× 10 grid has the shortest compression time, followed
by the 20 × 20, 50 × 50, and 100 × 100 grids. The number
of pixels to compress in each grid size is responsible for this
pattern in the findings. More grids necessitate more processing,
affecting our suggested approach’s latency.

In addition, as shown in Fig. 3b, the 100×100 grid obtains
the maximum compression rate, followed by 50×50, 20×20,
and 10 × 10. The 100 × 100 grid achieves 24%, 37%, and
98.55% more compression rates compared to 10×10, 20×20,
and 50× 50, respectively. This result is due to the number of
pixels compressed in each grid size, as larger grids require

(a) Computational time (b) Compression rate

Fig. 3: Impact of map data optimization.

more compression, reducing the image data size to optimize
transmission data. From Figs. 3a and 3b, we select the 100×
100 grid size because of its relatively low computation time
and high compression rate.

Additionally, the detection error rate decreases as the grid
shapes increase. This is because a finer grid can result in more
precise bounding box predictions, while a coarser grid can lead
to less precise predictions but faster computation time. Using
100 × 100 grid shapes, we achieve a lower object detection
error rate but a higher computational time than 10×10, 20×20,
and 50 × 50. On average, 100 × 100 produces 75% more
accuracy but 22% more computational time than the other
baseline grid shapes.

In this part of the experiment, we investigate the influence of
HD map data size and the number of vehicles on transmission
time using various baseline techniques. Figs. 4a and 4b depict
the transmission time in different baseline systems with varied
data volumes and number of vehicles. The following are
our observations: 1) The proposed scheme outperforms other
baseline schemes considerably under different data sizes, and
2) when data size and the number of vehicles increase, the
transmission time of the baseline schemes increases drastically
compared to the proposed schemes. Our proposed scheme
maintains a consistent rise compared to other baseline systems
due to image data optimization. In NDN vehicular settings,
data size substantially impacts transmission time performance.
For example, when the data increases to 400Mb, the media
transmission time increases to 9s, 16s, 20s, and 30s in the
proposed scheme, RLSS, Pro-RTT, and Loss-based schemes,
respectively. Regarding the number of vehicles, the average
transmission time for the proposed scheme, RLSS, Pro-RTT,
and Loss-based schemes is 4.98s, 9.37s, 14.72s, and 19.8s,
respectively.

V. CONCLUSION

In this study, we designed and implemented a data optimiza-
tion scheme for HD map updates in vehicular NDN scenarios.
We first formulated our HD map optimization problem as a
convex optimization problem and solved it with CNNs from
the YOLOX algorithm. In particular, we modified the YOLOX
object detection algorithm to detect and compress redundant
pixels in local map data before transmission to the MEC
server. To deploy our proposed scheme, we constructed a
vehicular NDN environment for data collection, processing,

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

4049

(a) Transmission data size (Mb/s) (b) Transmission time (s)

Fig. 4: Transmission data size and time.

and transmission using the CARLA simulator and ROS2. We
show that the proposed HD map data optimization algorithm
can guarantee improved performance by significantly reducing
transmission data and time. Compared to the baseline schemes
discussed, our proposed approach cuts the amount of data
transmitted and the transmission time by 48.25% − 65.78%
and 46.85%− 78.84%.

REFERENCES

[1] L. Liu, Y. Zhou, V. Garcia, L. Tian, and J. Shi, “Load aware joint comp
clustering and inter-cell resource scheduling in heterogeneous ultra dense
cellular networks,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 3, pp. 2741–2755, Nov. 2017.

[2] C. Xing, S. Ma, and Y. Zhou, “Matrix-monotonic optimization for mimo
systems,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp.
334–348, Nov. 2014.

[3] M. Amadeo, C. Campolo, and A. Molinaro, “Information-centric net-
working for connected vehicles: a survey and future perspectives,” IEEE
Communications Magazine, vol. 54, no. 2, pp. 98–104, Feb. 2016.

[4] Y. Zhao and Q. Zhu, “Evaluation on crowdsourcing research: Current
status and future direction,” Information Systems Frontiers, vol. 16, no. 3,
pp. 417–434, Jul. 2014.

[5] B. Camburn, R. Arlitt, D. Anderson, R. Sanaei, S. Raviselam, D. Jensen,
and K. L. Wood, “Computer-aided mind map generation via crowdsourc-
ing and machine learning,” Research in Engineering Design, vol. 31,
no. 4, pp. 383–409, Oct. 2020.

[6] K. Kim, S. Cho, and W. Chung, “Hd map update for autonomous driving
with crowdsourced data,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1895–1901, Feb. 2021.

[7] S. H. Ahmed, S. H. Bouk, M. A. Yaqub, D. Kim, and H. Song,
“Difs: Distributed interest forwarder selection in vehicular named data
networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 9, pp. 3076–3080, Nov. 2017.

[8] J. Wang, C. Jiang, K. Zhang, T. Q. Quek, Y. Ren, and L. Hanzo,
“Vehicular sensing networks in a smart city: Principles, technologies
and applications,” IEEE Wireless Communications, vol. 25, no. 1, pp.
122–132, Oct. 2017.

[9] Y. Zhou, L. Tian, L. Liu, and Y. Qi, “Fog computing enabled future
mobile communication networks: A convergence of communication and
computing,” IEEE Communications Magazine, vol. 57, no. 5, pp. 20–27,
Mar. 2019.

[10] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
Feb. 2016.

[11] P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and K. Wang,
“Traffic-aware geo-distributed big data analytics with predictable job
completion time,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 28, no. 6, pp. 1785–1796, Nov. 2016.

[12] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask scheduling in
mapreduce with data locality: Throughput and heavy-traffic optimality,”
IEEE/ACM Transactions On Networking, vol. 24, no. 1, pp. 190–203,
Nov. 2014.

[13] A.-C. G. Anadiotis, G. Morabito, and S. Palazzo, “An sdn-assisted
framework for optimal deployment of mapreduce functions in wsns,”
IEEE Transactions on Mobile Computing, vol. 15, no. 9, pp. 2165–2178,
Nov. 2015.

[14] Z. Jiang, C. Xu, J. Guan, H. Zhang, and S. Yu, “Loss-aware adaptive
scalable transmission in wireless high-speed railway networks,” in 2017
IEEE International Conference on Communications (ICC), 2017, pp.
1–6.

[15] J. Leng, G. Ruan, Y. Song, Q. Liu, Y. Fu, K. Ding, and X. Chen,
“A loosely-coupled deep reinforcement learning approach for order
acceptance decision of mass-individualized printed circuit board man-
ufacturing in industry 4.0,” Journal of cleaner production, vol. 280, p.
124405, 2021.

[16] X. Guo, Y. Cao, J. Zhou, Y. Huang, and B. Li, “Hdm-rrt: A fast hd-
map-guided motion planning algorithm for autonomous driving in the
campus environment,” Remote Sensing, vol. 15, no. 2, p. 487, 2023.

[17] F. Wu, W. Yang, J. Lu, F. Lyu, J. Ren, and Y. Zhang, “Rlss: A
reinforcement learning scheme for hd map data source selection in
vehicular ndn,” IEEE Internet of Things Journal, Nov. 2021.

[18] S. Arshad, M. Sualeh, D. Kim, D. V. Nam, and G.-W. Kim, “Clothoid: an
integrated hierarchical framework for autonomous driving in a dynamic
urban environment,” Sensors, vol. 20, no. 18, p. 5053, Sep. 2020.

[19] G. Lu and Y. Wang, “The improved yolo-v5 based automatic non-
parking overloading detection method,” in 2022 5th International Sym-
posium on Autonomous Systems (ISAS), vol. 2, no. 1, Apr. 2022.

2023 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

4050

