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Abstract—A Digital Twin is a digital replica of a living or non-
living physical entity, and this emerging technology attracted
extensive attention from different industries during the past
decade. Although a few Digital Twin studies have been conducted
in the transportation domain very recently, there is no systematic
research with a holistic framework connecting various mobility
entities together. In this study, a Mobility Digital Twin (MDT)
framework is developed, which is defined as an Artificial Intel-
ligence (AI)-based data-driven cloud-edge-device framework for
mobility services. This MDT consists of three building blocks
in the physical space (namely Human, Vehicle, and Traffic), and
their associated Digital Twins in the digital space. An example
cloud-edge architecture is built with Amazon Web Services (AWS)
to accommodate the proposed MDT framework and to fulfill its
digital functionalities of storage, modeling, learning, simulation,
and prediction. The effectiveness of the MDT framework is
shown through the case study of three digital building blocks
with their key micro-services: the Human Digital Twin with
user management and driver type classification, the Vehicle Dig-
ital Twin with cloud-based Advanced Driver-Assistance Systems
(ADAS), and the Traffic Digital Twin with traffic flow monitoring
and variable speed limit. Future challenges of the proposed
MDT framework are discussed towards the end of the paper,
including standardization, AI for computing, public or private
cloud service, and network heterogeneity.

Index Terms—Digital Twin, connected vehicles, cloud comput-
ing, edge computing, Amazon Web Services

I. INTRODUCTION

THE recent development of the Internet of Things (IoT)
has been facilitating all kinds of cutting-edge technolo-

gies, where their application scenarios are rooted both in the
user level (namely individual consumer or private company),
and the system level (namely commercial or industrial sector).
From the user’s perspective, the introduction of the IoT will
play a leading role in scenarios like assisted living, e-health,
and enhanced learning. From the system’s perspective, the
most apparent scenarios will be industrial manufacturing,
logistics, business/process management, and intelligent trans-
portation of people and goods [1].

The Digital Twin, as an emerging representation of Cyber-
Physical Systems (CPS), attracted increasing attention over
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the past decade [2]. Based on a market research report, the
global Digital Twin market size was valued at USD 5 billion
in 2020, and is projected to expand to 86 billion in 2028 at
a compound annual growth rate of 42.7% during this period
[3]. It was also pointed out in their report that, the automotive
and transportation industry takes one of the largest shares in
the global Digital Twin market in 2020, among other end-uses
like manufacturing, energy, and healthcare.

Although the definitions of the Digital Twin vary in different
versions [4], [5], the basic concepts are essentially the same:
A Digital Twin is a digital replica of a living or non-living
physical entity. Digital Twin technology paves the way to real-
time monitoring and synchronization of real-world activities
with the virtual counterparts [6]. The Digital Twin concept
was first born in the aerospace domain when the National
Aeronautics and Space Administration (NASA) adopted that
as a key element in its 2010 technology roadmap. Along with
its rapid development in different domains during the past
decade, including aeronautics and space [4], [7], robotics [8],
[9], manufacturing [10], [11], and informatics [12], the Digital
Twin also has a huge potential in the transportation domain.

The emergence of connected vehicle technology introduces
another platform to implement the Digital Twin. Since the
level of connectivity within our vehicles has greatly improved,
these equipped vehicles are able to “talk” with other entities,
such as with other connected vehicles through vehicle-to-
vehicle (V2V) communications, with traffic infrastructures
through vehicle-to-infrastructure (V2I) communications, and
with cloud servers through vehicle-to-cloud (V2C) commu-
nications [13]–[16]. Specifically, V2C communications allow
connected vehicles to 1) upload their data to the cloud server,
enabling Digital Twins to be built in the digital (cyber)
world based on their counterparts in the physical world; and
2) offload their onboard computations to the cloud server,
enabling Digital Twins to build models and calculate guidance
information through powerful cloud computing, which can
then be fed back to connected vehicles.

Very recently, a few Digital Twin studies have been con-
ducted in the transportation domain [?], [?], [17], but none
of them has a holistic framework connecting various mo-
bility entities (i.e., human, vehicle, and traffic) together. In
this study, an Mobility Digital Twin (MDT) framework is
proposed, which is defined as an Artificial Intelligence (AI)-
based data-driven cloud-edge-device framework for mobility
services. The MDT framework is built on top of three different
planes: 1) the physical space that has human beings, vehicles,
and traffic infrastructures; 2) the digital space that has the
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digital replicas of aforementioned physical entities; and 3)
the communication plane between these two spaces. Given
the connectivity nature of this framework, it transforms con-
nected vehicles into Internet of Vehicles (IoV) by leveraging
IoT technologies. The cloud-edge architecture is built with
Amazon Web Services (AWS) to accommodate the proposed
MDT framework and implement its digital functionalities of
storage, modeling, learning, simulation, and prediction. The
effectiveness of the MDT framework is shown through the
case study of three digital building blocks with their key micro-
services: the Human Digital Twin with user management and
driver type classification, the Vehicle Digital Twin with cloud-
based Advanced Driver-Assistance Systems (ADAS), and the
Traffic Digital Twin with traffic flow monitoring and variable
speed limit.

Since traditional mobility system frameworks heavily rely
on onboard storage and computing, their functionalities are
limited by multiple constraints, such as computing power,
accessibility to big data, and easiness of deployments and mod-
ifications. On the contrary, the proposed MDT framework in
this study addresses these constraints by making the following
contributions:

• Powerful: The MDT framework allows users to rapidly
adjust cloud resources to meet fluctuating/unpredictable
demands, providing high computing power at certain
periods of peak demand.

• Shareable: Bulk data generated by an end user is of-
floaded and stored on the cloud (and/or edge), which can
be retrieved and utilized by the same user at a later time
frame, or shared with other end users for micro-services
on demand.

• Manageable: The MDT framework allows users to get
their micro-services up and running faster on the cloud
platform, with more manageability and less maintenance.
Over-the-air (OTA) updates are also available to the MDT
framework.

• Extendable: Arbitrary mobility micro-services can be
easily implemented to the MDT framework with minimal
changes on the cloud-edge architecture and data structure.

The remainder of this study is organized as follows: Section
II conducts a literature review regarding cloud computing and
Digital Twins in the context of connected vehicles. Section III
introduces the concept of this proposed MDT framework with
a detailed explanation of the communication plane and data
workflow, the physical space, and the digital space. Then, the
cloud-edge architecture based on AWS is developed in Section
IV, which accommodates the proposed MDT framework. A
case study is conducted in Section V, where a Personalized
Adaptive Cruise Control (P-ACC) system integrates multiple
micro-services of the MDT framework and outperforms tra-
ditional ACC systems. Finally, this study is finished with a
discussion about future challenges in Section VI and a brief
conclusion in Section VII.

II. LITERATURE REVIEW

A. Transportation Applications with Cloud computing

The emergence of commercial cloud computing services,
such as Amazon Web Services (AWS) [18], Microsoft Azure
[19], Google Cloud Platform (GCP) [20], and Alibaba Cloud
[21], has facilitated many applications in the domain of vehicu-
lar/transportation CPS. Such services always provide a variety
of basic abstract technical infrastructure and building blocks
for distributed computing. Taking AWS as an example, which
has the largest market share among all competitors in 2020,
it comprises over 200 products and services for computing,
storage, networking, database, analytics, IoT, and so on [18].
All these features of cloud computing services, together with
their advantage of scalability, enable connected vehicles to
offload their data and onboard computing demand to the cloud.

Guerrero et al. demonstrated that cloud computing can be
integrated with intelligent transportation systems to address
issues faced by the transportation sector, such as traffic conges-
tion, roadway safety, and pollutant emissions [22]. Specifically,
the concept of vehicular cloud can enhance transportation
systems by storing and processing the collected data (including
traffic lights, parking meters, camera images, etc.), and creat-
ing a historical registry of various data sources [23]. Therefore,
the transportation authorities who own these entities can make
informed decisions on when to change traffic directions, install
new traffic lights, and remodel/repair road segments. However,
the detailed cloud architecture design is not covered in these
studies, and the vehicular cloud applications are introduced
only on the conceptual level without conducting case studies.

During the past decade, various transportation applications
were proposed by leveraging the capability of cloud computing
[24], [25]. A navigation-assisted route optimizer was devel-
oped by Gerla, where the navigator server collects information
from connected vehicles, and then computes the optimal
routes by constructing a traffic load map and traffic pattern
matrix, estimating road segment loads and delays [26]. A
bus smart sensor prototype was designed and implemented
by Herrera-Quintero et al. using the serverless and micro-
service cloud architecture, where GCP Firebase was used for
storage and AWS Lambda was used for computation [27]. A
vehicular pollutant emission detection system was developed
by Bhatnagar et al., where AWS IoT and Amazon DynamoDB
were integrated to send notifications to the vehicle driver if
the emission sensor detects a gas leakage [28]. A vehicle-
based traffic surveillance application was developed by Deng
et al., where the AWS-based serverless cloud architecture was
proved to be feasible for real-time transportation applications
through a field implementation [29]. However, aforementioned
studies focus more on individual transportation application that
provides solutions within a very limited domain, while none
of them designs a holistic framework that connects various
mobility entities, benefiting human, vehicle, and traffic at the
same time.

B. Digital Twins for Connected Vehicles

The Digital Twin concept has been loosely defined and
adopted in the transportation domain since its emergence,
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partly due to its similarity and connection with other tech-
nologies. In particular, the confusion among the roles of
iteration (i.e., switches back and forth between the physical
and digital spaces), model-based design (i.e., starts with digital
components and incrementally swaps in physical components),
and Digital Twins (i.e., maintain synchronized versions of
a physical system and its digital counterpart) in connected
vehicles are well discussed in the survey paper by Schwarz and
Wang [30]. Nonetheless, many previous efforts related to the
IoT and CPS in the automotive industry envision the develop-
ment of the Digital Twin, since the majority of those proposed
methodologies and/or algorithms were developed on multi-
layer system frameworks with physical entities (i.e., vehicles)
and their digital replicas (simulation models/environments).

Alam and Saddik developed a Digital Twin framework
reference model for the cloud-based CPS, where a telematics-
based driving assistance application was proposed for the
vehicular CPS with three parts: 1) computation, 2) control,
and 3) sensors and services fusion [?]. Kumar et al. proposed
a Digital Twin-centric approach with machine learning, edge
computing, 5G communication, and data lake, aiming for
driver intention prediction and traffic congestion avoidance [?].
Chen et al. proposed a “Digital Behavior Twin” framework
in which behavioral models of drivers are shared among
connected vehicles to predict future actions of neighboring
vehicles and hence improve driving safety [17]. This idea was
extended to two subsequent patent applications by the same
authors [31], [32]. However, the term of “Digital Twin” is
used more like a simple concept in these studies, where their
presented technologies are agnostic to any IoT technologies
besides the Digital Twin. They do not systematically integrate
the Digital Twin in any cloud architecture design, nor do they
have clear data structures or workflows.

Related literature in the fields of “parallel driving” or “par-
allel transportation” has direct implications to the Digital Twin
framework of our study. In 2010, Wang brought up the parallel
transportation concept for the first time, where he defined
parallel control and management of transportation as “a data-
driven approach for modeling, analysis, and decision-making
that considers both the engineering and social complexity in
its processes” [33]. Many subsequent works were conducted in
this research domain afterward, including the parallel driving
framework proposed by Wang et al. [34]. In this cloud-based
cyber-physical-social system framework, the physical world,
mental world, and artificial world are modeled as three parallel
levels, considering interactions among connected vehicles,
human drivers, and information. However, many applications
shown in these studies do not come up with a cloud-based
framework, and in such cases their capabilities of storage,
learning, and prediction are well limited by vehicle onboard
resources.

More relevant studies have been conducted very recently
by the authors of this study in the context of the Digital Twin
for connected vehicles. Wang et al. proposed a Digital Twin
paradigm for an advanced driver-assistance system (ADAS)
of connected vehicles [35]. In this paradigm, onboard devices
on connected vehicles collect and upload data to the cloud
server through cellular-based V2C communication, where the

cloud server can create digital replicas of entities in the real
world (i.e., roads, vehicles, and drivers) based on the received
data. All proposed models and algorithms are applied to these
digital copies with cloud computing, where their results are
propagated back to the real connected vehicles through V2C
communication for ADAS, assisting the decision making of
drivers in real time. A subsequent field implementation using
this Digital Twin paradigm was conducted by Liao et al.,
where three human-driven passenger vehicles performed ramp
merging cooperatively, showing the benefits of safety and
environmental sustainability compared to the traditional ramp
merging scenario [36]. A Digital Twin simulation architecture
was also proposed later to allow researchers to implement
this paradigm in a fully virtual environment of connected and
automated vehicles with the Unity game engine [37].

Visualization of the Digital Twin information from the cloud
remains a challenging issue, where Liu et al. developed a data-
fusion methodology to overlay the Digital Twin information
for the driver’s field of view with the help of camera (RGB
and depth) images, assisting the driver to make lane-change
prediction of neighboring vehicles [38]. On top of this study,
Wang et al. [39] designed a cooperative driving system for
connected vehicles, where non-line-of-sight vehicles are visu-
alized as “Digital Twin slots” on the augmented reality-based
head-up display of the ego vehicle, guiding it to cross non-
signalized intersections without any collision or unnecessary
full stop. However, none of these recent studies, which are
from the authors of this study as well, designs a holistic system
framework that connects mobility entities (i.e., human, vehicle,
and traffic) together, and neither do they develop any cloud
architecture with detailed data structures or workflows.

It needs to be noted that, many studies consider the Dig-
ital Twin simply as a high-fidelity modeling and simulation
environment of real-world entities. Although this statement
is partially correct, our understanding of the Digital Twin
covers wider than merely modeling and simulation, namely
sampling and actuation in the physical space, and storage,
modeling, learning, simulation, and prediction in the digital
space. Related literature with the limited definition of the
Digital Twin is not reviewed in this study.

III. MOBILITY DIGITAL TWIN CONCEPT

The MDT framework proposed in this study, as shown
in Fig. 1, consists of three planes: 1) The lower plane,
highlighted in yellow, stands for the physical space where
human beings, vehicles, and traffic infrastructures reside; 2)
The upper plane, highlighted in blue, represents the digital
space where the digital replicas of those physical entities are
located at; 3) Between these two planes, the communication
plane (in grey) plays a crucial role in this framework to allow
real-time and non-real-time data streaming for both upstream
and downstream.

Three entities are considered in this MDT framework:
Human, Vehicle, and Traffic. Given the existence of the com-
munication plane, each of the entity can be connected to the
digital space (e.g., Internet) and exchanges data with each
other. Therefore, this MDT framework is a good representation
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Fig. 1. Illustration of the Mobility Digital Twin (MDT) framework for connected vehicles, which consists of a physical space, a digital space, and a
communication plane between two spaces.

of the IoT, and it allows connected vehicles to act as IoVs
with IoT technologies. In this section, we provide a deep dive
into this MDT framework regarding all three aforementioned
planes, introducing their building blocks with respect to their
concepts and functionalities.

A. Communication Plane and Data Workflow

The communication plane of this MDT framework sits
between the physical space and digital space, and it provides
seamless connections between these two spaces. This MDT
framework’s end-to-end process starts from sampling data in
the physical space, where all or part of the data is transmitted
upstream to the digital space via the communication plane.
Those data will go through one or multiple processes in the
digital space internally, including storage, modeling, learning,
simulation, and prediction, and the resulting data is transmitted
downstream to the physical space via the communication
plane. Those data, upon receiving, is applied by the actuators
of the physical space to fulfill the end-to-end process.

The major difference between a Digital Twin framework
with an iteration framework, or a model-based design frame-
work is that, a Digital Twin framework always maintains
synchronized versions of the physical system and its digital
counterpart [30]. In the proposed MDT framework of our
study, this is guaranteed by the communication plane between
the physical and digital spaces. Without the communication
plane, data cannot be transmitted between these two spaces to

enable their interactions and synchronizations, hence Digital
Twins cannot be formed.

Since cloud computing is leveraged in this MDT framework,
the digital space of the framework is deployed fully or partially
on the commercial and/or private cloud. Therefore, the com-
munication module needs to provide access to the cloud for the
physical space, which is either direct access or indirect access
(via edges). The MDT framework does not necessarily require
any specific wireless communication technology (DSRC [40],
C-V2X [41], or something else in the future) to be served
as the communication plane, as long as it can be applied to
transmit data between the physical space and the digital space.

B. Physical Space

If we consider this MDT framework as an end-to-end
framework, then the physical space is in charge of both ends of
this framework, namely, sampling and actuation. We assume
no (or only minimal) computing work needs to be conducted
in the physical space, since all (or majority) of that is offloaded
to the digital space through the communication plane.

For sampling, sensors in the physical space detect the
dynamic status, operating process, or event occurrences, and
then aggregate these measurements under various resolutions
for their transmission to the digital space. On the other hand,
once the processed results are received from the digital space,
actuation can be made by physical entities to fulfill this end-to-
end framework. Generally, the physical space is defined on a
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world coordinate, which may contain all the transportation-
related physical entities, and can be classified into three
building blocks: Human, Vehicle, and Traffic.

1) Human: In this framework, all human beings involved
in the transportation system are considered, which include not
only drivers but also passengers, pedestrians, cyclists, etc. The
sampling process can be accomplished by the human-machine
interface in an active manner, or by the in-cabin status sensing
(e.g., camera, seat sensor, etc.), human wellness monitor (e.g.,
smartwatch, electrocardiogram, etc.), and other perception
sensors in a passive manner. The preferences of a human’s
behavior can also be set actively (e.g., a driver manually sets
the preferred cruise control speed), or be measured passively
(e.g., a pedestrian’s preferred trajectory of crossing a crosswalk
is recorded by the vehicle/intersection camera), where both of
them are considered as the sampling process.

The actuation process of the Human block in this MDT
framework is mainly conducted by drivers. In the foreseeable
future, our transportation system will remain in a mixed auton-
omy traffic environment, where only part of all vehicles will be
fully autonomous vehicles (with SAE level-5 automation), but
the majority are still driven by human drivers (with no degree
or a certain degree of automation). Therefore, if drivers can be
provided with additional information from the digital space of
this MDT framework, such as adjacent vehicle’s lane-change
possibility [42] or upcoming signal phase and timing [43],
their actuation will be more accurate and in turn benefit other
entities in the transportation system.

2) Vehicle: Vehicle is the core of this MDT framework, as it
is the host of drivers and passengers, and also the fundamental
component of traffic. As can be seen from Fig. 1, all modules
in the physical space, not only the ones in the Vehicle block
itself but also those in the Human block and the Traffic block,
are serving for vehicle-related activities.

Specifically for the Vehicle block, the localization module
(i.e., GNSS), the perception sensors (i.e., ultrasonic, camera,
radar, and/or LiDAR), together with vehicle CAN BUS are
in charge of the sampling process. Related data, such as
positions, speeds, and accelerations of the ego vehicle and
its surrounding vehicles can be sampled from these physical
components, and then be propagated to the digital space
through communication.

The actuation process of the Vehicle block in this MDT
framework is conducted by the vehicle steering system, ac-
celerator, and brake. These physical components are able to
actuate any lateral or longitudinal control command received
from the digital space, and therefore allow the vehicle to
achieve its desired motion.

3) Traffic: Many existing intelligent vehicle platforms and
applications, such as ADAS or autonomous driving systems
(ADS), only focus on their performances on the ego vehicle
without considering their interactions with the large-scale
traffic network. However, as can be seen from Fig. 1, Traffic
is indeed a crucial building block of our MDT framework for
connected vehicles. The beneficiaries of this MDT framework
include not only connected vehicles and their occupants, but
also the whole traffic network on a wider scope.

Particularly, the Traffic block in the physical space includes
various traffic infrastructures, such as traffic signals, roadside
units, camera/radar/loop detectors, and electronic traffic signs.
These physical components are able to either generate data
(e.g., signal phase and timing) by themselves, or measure data
(e.g., traffic count and traffic flow) generated by other traffic
entities. Such data is sampled and sent to the digital space
through the communication plane, benefiting other building
blocks of this MDT framework.

On the other hand, guidance or adjustment received from
the digital space can also be actuated by the Traffic block
to improve the safety and efficiency of the large-scale traffic
network. For example, the signal phase and timing of traffic
lights can be adjusted to better serve different traffic flows un-
der different situations [44]. Guidance or warning information
can be broadcast to connected vehicles via roadside units, and
to all traffic entities via electronic traffic signs.

C. Digital Space

The aforementioned physical space of this MDT framework
handles both ends of this end-to-end framework (i.e., sampling
and actuation). On the other hand, the digital space is in
charge of the processes between both ends: storage, modeling,
learning, simulation, and prediction.

One of the biggest strengths of this MDT framework over
traditional mobility system frameworks is the data lake, which
is a centralized repository that allows structured or unstruc-
tured data at any scale to be stored. Traditionally, mobility data
measured by a physical entity is only saved in its onboard data
storage due to the lack of communication capability. Such data
is only used for the physical entity itself without being shared
with other entities, and will be wiped out once the maximum
size limit of the onboard data storage is met. However, with
the proposed MDT framework, mobility data measured by
Human, Vehicle, and Traffic blocks in the physical space can
be transmitted to the digital space through the communication
plane, and stored in the data lakes of associated Digital Twins
for future use. Such data can be used for the micro-services
not only in the original mobility block, but also in other blocks
(e.g., traffic signal data measured by the Traffic block can
be used for both the “real-time monitoring” micro-service in
the Traffic Digital Twin and the “cooperative control” micro-
service in the Vehicle Digital Twin).

Note there exists a misunderstanding about the Digital
Twin in the research community, where some simply con-
sider Digital Twin technology as a modeling and simulation
technology. In our MDT framework, modeling and simulation
are part of the digital processes that are enhanced by the
data lake and data sharing in the digital space, where co-
simulation platforms can be built to synchronize data from
multiple simulators (such as the Unity-SUMO-AWS integrated
platform [45]). However, as shown in Fig. 1, our MDT
framework is more than just modeling and simulation, where
other digital processes (i.e., storage, learning, and prediction)
play equivalently crucial roles in the digital space. All of
aforementioned digital processes can be applied to mobility
micro-services, and they are realized in a more powerful,



IEEE INTERNET OF THINGS JOURNAL, EARLY ACCESS 6

shareable, manageable, and extendable manner by leveraging
cloud computing and edge computing.

1) Human Digital Twin: Human Digital Twins are digital
replicas of real humans in the physical space. This building
block in the digital space has a human data lake that stores
all data sampled from the Human block in the physical space,
where different humans have their personal databases to be
differentiated from others. With real-time data sampling and
historical data storage, the Human Digital Twin is able to
classify drivers into specific driver types by machine learning
algorithms like k-nearest neighbors (KNN), and to provide
guidance in a customized or personalized manner [46]. Taking
advantage of the data coming from the Vehicle block, the Hu-
man Digital Twin can also predict future behaviors of drivers
(e.g., lane-change intention [47]) and detect their anomalies
[48]. The results of the aforementioned micro-services can be
applied to third parties such as insurance companies, where
they can further build a micro-service to set the insurance
pricing for different drivers based on their driving behaviors
[49].

2) Vehicle Digital Twin: Vehicle Digital Twins are the
digital replicas of real vehicles in the physical space. Once
the sampled data is received from a connected vehicle in the
physical space, it can be saved in this particular vehicle’s data
lake with a unique identification number. Those data in the
Vehicle Digital Twin about the ego vehicle (e.g., position,
speed, and acceleration) and its surrounding environment
(perceived by perception sensors) can also be shared with
the Human Digital Twin, the Traffic Digital Twin, or other
connected vehicles’ Vehicle Digital Twins for various micro-
services.

With massive data storage and data sharing in the digital
space, multiple vehicle-related micro-services can be enabled,
such as the ones requiring cooperation among multiple con-
nected vehicles: cooperative localization, cooperative percep-
tion, cooperative planning, and cooperative control. Addi-
tionally, micro-services that need time-series data can also
be benefited from this MDT framework, where one typical
example is predictive maintenance: Based on modeling and
simulation of the time-series vehicle data that is sampled from
the Vehicle block in the physical space and stored in the
Vehicle Digital Twin, the learning process can be conducted
in the digital space and predictions can be made regarding
potential failures of vehicle components at a future time [50].
Such prediction results can be used by the vehicle owner
or manufacture to schedule onsite maintenance before the
components break down.

3) Traffic Digital Twin: Traffic Digital Twins are the digital
replicas of traffic infrastructures, which receive data from the
Traffic block in the physical space. Such sampled data, like
signal phase and timing, traffic count, and traffic flow, can be
stored in the traffic data lake for future reference. It can also
be used for multiple traffic micro-services in real time, such
as monitoring the traffic condition [?], variable speed limit
[51], routing and navigation [52], ridesharing planning [53],
and parking management [54].

Similar to the Human Digital Twin and Vehicle Digital Twin,
the Traffic Digital Twin can be enhanced by the communication

among these Digital Twin blocks. For example, the micro-
service of routing and navigation can be carried out solely by
the real-time traffic flow data sampled from camera/radar/loop
detectors in the real world. However, they can be further
enhanced if behavior preferences are set by the Human block
and predictions are made by the Human Digital Twin (e.g., a
driver/passenger always goes to grocery stores when his/her
commute route is highly congested). Additionally, if the Vehi-
cle block detects the fuel/battery level is low and sends that
to the Vehicle Digital Twin, it can also assist the routing and
navigation micro-service to find a gas/charging station near a
user-preferred grocery store along the original route.

IV. EXAMPLE ARCHITECTURE WITH CLOUD-EDGE
COMPUTING

In this section, we build an example architecture for the
proposed MDT concept by leveraging cloud computing and
edge computing, enabling both real-time and bulk-batch in-
gestion, processing, and analytics of mobility data. As shown
in Fig. 2, the architecture can be divided into four layers: 1)
The cloud layer, which is built on AWS and its Virtual Private
Cloud (VPC) [55]; 2) The edge layer, which has a comput-
ing component, a communication component, and a storage
component; 3) The device layer, which generates data and
consumes guidance; 4) The API (Application Programming
Interface) layer, which hooks up the cloud layer with external
APIs.

The major purpose of designing this architecture is to
accommodate the proposed MDT framework shown in Fig.
1, so the Digital Twin does not just remain in the conceptual
phase, but can also be deployed in the real world with the
help of cloud computing and edge computing. Particularly,
the physical space of the MDT framework shown in Fig. 1
is represented by the device layer of this example architec-
ture, where mobile apps, simulators, real vehicles and Radio
Control (RC) vehicles sample data from Human, Vehicle and
Traffic, and also actuate commands received from the edge and
cloud layers. The communication plane of the MDT frame-
work is positioned within the edge layer’s communication
component of this example architecture. The digital space of
the MDT framework, along with its data lakes and micro-
services, spans the whole part of the cloud and API layers, as
well as part of the edge layer (except for its communication
component).

As mentioned in section II that, the Digital Twin concept is
sometimes inadequately considered as a high-fidelity modeling
and simulation environment by many studies, since none
of these studies fulfilled all functionalities of the Digital
Twin concept (storage, modeling, learning, simulation, and
prediction) by building a cloud-edge architecture. Although the
example architecture built in this study is not the sole solution,
it does provide an idea of deploying the Digital Twin concept
in the real world. Throughout the rest of this section, various
modules in this architecture are explained in corresponding
subsections sorted by the layers they are in.
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Fig. 2. An example architecture of the proposed Mobility Digital Twin with the cloud layer, the edge layer, the device layer, and the API layer.

A. Cloud Layer

In Amazon VPC of the cloud layer, there are five differ-
ent modules: Distributed Real-Time Processing, Data Stores,
Analytics Workbench, Rule Engine, and AI/ML Framework
& Digital Twin micro-services. Specifically, in Distributed
Real-time Processing, we leverage existing tools like Amazon
EKS [56], Apache Kafka [57], and Apache Storm [58] to
provide real-time processing and analytics. The Analytics
Workbench is the workhorse for big data analytics. It consists
of OpenTSDB, which is a distributed, scalable, time-series
database built on top of Hadoop and HBase [59]. This supports
a writing rate of up to millions of entries per second, supports
data storage with millisecond-level precision, and preserves
data permanently without sacrificing precision. In addition,
Apache Spark [60], a distributed processing system, is used
to conduct predictive analytics using Amazon EMR clusters
[61].

Rule Engine service evaluates the rules configured for
entities (e.g., humans and vehicles) on the data received from
the Kafka queue, and redirects it to AI/ML Framework &
Digital Twin Micro-services based on the rule validation result.
AI/ML Framework & Digital Twin Micro-services are the
core of this cloud-edge architecture, where end users are able
to implement customized algorithms and applications with
various objectives. This module processes time-series data sent
from the physical space using statistical techniques, and sends
guidance back to the entities in the physical space. The data
workflow is triggered via Apache Airflow, an open-source
workflow management platform.

Data Stores of our cloud-edge architecture are made up
with: 1) Amazon S3, a scalable storage infrastructure to build
our Digital Twin data lakes [62]; 2) Amazon DocumentDB
(with MongoDB compatibility), a database service that is

purpose-built for JSON data to execute flexible, low latency
queries to obtain a near real-time record of events in parallel
on a massive scale [63]; and 3) Redis, an open-source, highly
replicated, non-relational kind of database and caching server
[64].

Outside of Amazon VPC but still inside of the cloud
layer sits AWS IoT Core [65], which enables the connection
between IoT devices (such as mobile apps, simulators, real
vehicles, and RC vehicles in this study) and AWS cloud
without the need to provision or manage servers. It supports
various devices and messages, and can process/route those
messages to AWS endpoints/devices reliably and securely. A
Bulk Data Ingestion module is also developed in this cloud-
edge architecture, enabling the ingestion of terabytes of data
in batch mode into our data lakes. Some scenarios where this
module can be triggered are 1) end-of-vehicle-trip bulk data
ingestion; 2) periodic bulk data ingestion; 3) event-triggered
data ingestion; 4) in-vehicle data logging. OpenID Connect is
a simple identity layer on top of the OAuth 2.0 authorization
protocol, which is adopted in this cloud-edge architecture to
verify the identity of end users based on the authentication
performed by an authorization server, as well as to obtain the
basic profile information about end users [66].

B. API Layer

External data sources can be integrated into this architecture
through the API layer, which enriches the functionalities of
digital micro-services. The API layer is connected with the
cloud layer of this example architecture through Amazon API
Gateway, which is an AWS managed service that can create,
publish, maintain, monitor, and secure APIs at any scale [67].
The API Gateway may act as the “front door” for applications
to access data or functionalities from our back-end services.
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In the API layer, traffic data (TomTom [68]), map data
(OpenStreetMap [69]), and weather data (OpenWeather [70])
can be connected to Amazon API Gateway via HTTPS. With
such data, more micro-services can be deployed in the Traffic
Digital Twin of the proposed MDT framework, and hence
provide better guidance towards humans and vehicles in the
physical space. Additionally, a customized Event Query API is
developed to receive notifications of events and fetch data from
the cloud layer. Examples of using this API are event-triggered
detection of anomalous driving behavior, and notification of
data ingestion in the cloud layer at the end of a trip. A
customized web portal is designed to visualize the digital
processes on the cloud, and it enables end users to create and
modify micro-services (to be shown in section V).

C. Edge Layer

Although the cloud layer of this example architecture is
designed to accommodate most of the digital processes of the
proposed MDT framework, this does not necessarily indicate
all digital processes shown in Fig. 1 must sit on the cloud. In
fact, it gets difficult sometimes for connected vehicles to have
the cloud access, since they continuously move around and
may lose internet connection every now and then. Therefore,
a hybrid approach with cloud computing and edge computing
can meet the requirements of ultra-low latency for running
safety-critical micro-services at the edge (e.g., road-side units),
and of extensive resources for running data-driven micro-
services on the cloud [25]. Edge computing has already been
widely researched by various works in the field of connected
vehicles [71], [72], and also deployed in the real world in
projects like 5G-MOBIX [73] and initiatives like Automotive
Edge Computing Consortium (AECC) [74].

In this example architecture, an edge layer is designed
with three different modules: computing, communication, and
storage.

• The computing module provides a hierarchical computing
platform for connected vehicles, where heterogeneous
computing nodes (e.g., microprocessor, GPU, and TPU)
are responsible for processing a variety of tasks offloaded
by vehicles. Sophisticated middleware mechanisms are
designed for determining which type of computing nodes
should be selected to handle specific tasks and services.

• The communication module enables real-time data ex-
change among the cloud, edge, and device layers. The
protocols implemented in the communication module are
HTTPS and two lightweight publish-subscribe network
protocols, MQTT and Zenoh [75]. Zenoh has been de-
signed to address the needs of applications that deal with
data in movement, data at rest and computation in a
scalable, efficient and location transparent data manner.

• The storage module is capable of caching temporary data.
The cached data could be either downloaded from the
cloud layer or uploaded from the device layer. Some
representative mobility applications that could benefit
from the storage module include OTA (i.e., caching the
update content distributed by the cloud at the edge) and
crowd-sourcing high-definition (HD) map (i.e., caching

uploaded sensor data from vehicles to update the local
map fragment accordingly at the edge). In our case study
shown in Section V, the storage module of the edge layer
also plays a crucial role to store the raw CAN BUS data
of the vehicle.

D. Device Layer

The device layer of this example architecture is shown on
the right side of Fig. 2, which stands for the Human, Vehicle
and Traffic building blocks in the physical space of the MDT
framework. Mobile apps are designed for both Android and
iOS, where end users’ position and speed data (measured
by GPS and gyroscope) can be uploaded to AWS IoT Core
directly via MQTT in real time.

Real vehicles and RC vehicles are the major data sources in
the device layer of this example architecture. Dynamics data
from CAN BUS (or ROS2 for RC vehicles), position data from
the localization module, together with perception data from
perception sensors (e.g., camera, radar, LIDAR), is sampled
in real time and pushed to the edge layer. On the other hand,
guidance from the digital space of the MDT framework is
received from the edge layer, and gets actuated on real vehicles
and RC vehicles.

External simulators, such as MATLAB [76], microscopic
traffic simulators SUMO [77] and PTV VISSIM [78], and
game engine-based simulators CARLA [79] and Unity [80],
are used in this architecture to emulate the physical devices of
the MDT framework. Note these simulators in the device layer
only play the role as physical entities in the physical space,
i.e., only for sampling and actuation processes. However,
simulators can also be deployed in the cloud layer or the edge
layer to play the role as digital entities, i.e., for modeling,
learning, simulation and prediction.

V. EXAMPLE MICRO-SERVICES AND CASE STUDY

This section first introduces example micro-services of
each digital building block of the proposed MDT framework,
including user management and driver type classification of
the Human Digital Twin, cloud-based ADAS of the Vehicle
Digital Twin, and traffic flow monitoring and variable speed
limit of the Traffic Digital Twin. Then, a case study of
the Personalized Adaptive Cruise Control (P-ACC) system is
conducted, which integrates aforementioned example micro-
services into one application. Real-world experimental results
showcase the effectiveness of P-ACC while functioning in the
MDT framework, compared to traditional ACC systems that
purely rely on on-board sensing and computing.

A. Human Digital Twin: User Management and Driver Type
Classification

This subsection introduces example micro-services of the
Human Digital Twin. A web portal is built to enable various
data management and visualization functionalities, where re-
lated data sampled in the physical space is transmitted and
visualized on the web portal through HTTPS.

To begin with, each human user needs to register a unique
account of the MDT through the web portal , and also to
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Fig. 3. Real-world demonstration in Mountain View, CA of the cloud-based
driver scoring system, used for user management and driver type classification.

specify the group(s) he/she belongs to: “viewer”, “supervisor”,
and/or “admin”. Particularly, the user account that belongs
to the “admin” group is granted full access to the human
data lake, which can register/delete any account in the digital
space, alter the group(s) any account belongs to, and sub-
scribe/unsubscribe micro-services for any account. “Supervi-
sor” account can only access its own human data lake with
modification right, while “viewer” account has no modification
right at all.

Human-vehicle association is also available through the web
portal, which enables the human user to associate his/her
vehicle in the vehicle data lake, building the connection
between the Human Digital Twin and the Vehicle Digital Twin.
Therefore, once the user account is registered, all the data
generated by this human user in the physical space will be
stored both in the user data lake (under the particular user ID)
and in the vehicle data lake (under the particular vehicle ID).

Besides the aforementioned details regarding user manage-
ment, the built-in micro-services of the Human Digital Twin
can also be applied. One example is shown as Fig. 3, where
different driving scores of a driver (i.e., overall score, eco
score, safe score, and comfort score) are calculated by the
open-source MOVESTAR model [81] running on the cloud in
real time. These driving scores can be further compared with
the historical data, which is generated by other drivers and
stored in the human data lake to classify this driver into a
certain type. An example classification result is visualized on
the web portal (currently shown as “Competent” in Fig. 4),
which can be used for other micro-services such as behavior
prediction, personalized guidance, and insurance pricing. The
historical classification results of this driver can also be
retrieved by clicking the detailed trip list shown in Fig. 4,
which further validates the power of the Human Digital Twin
in terms of storage.

B. Vehicle Digital Twin: Cloud-Based ADAS

This subsection introduces example micro-services of the
Vehicle Digital Twin through a cloud-based ADAS, where
cloud computing is leveraged to provide visualization guidance
and control commands towards connected vehicles. As shown
in Fig. 5, a human-in-the-loop simulation (built with AWS,
the Unity game engine, and the Logitech G29 Driving Force)
is conducted to emulate the data sampling process from a
connected vehicle in the physical space [37]. When a human

Fig. 4. User management page on the web portal of the Mobility Digital
Twin, showing user’s driver risk class (among reckless, intermediate, and
competent), associated vehicle (currently and historically), and past trips with
clickable links (in light blue fonts) for more details.

driver manually controls the vehicle, its data is sampled from
the physical components (e.g., CAN BUS, radar, camera) and
uploaded to the data lake of the Vehicle Digital Twin. This
process is shown as the lower-left corner “Unity-AWS Uplink
Message” of Fig. 5.

The data stored in the data lake (potentially from all
historical trips) of this vehicle is inputted to micro-services
of the Vehicle Digital Twin (e.g., cooperative planning, co-
operative control, etc.). Machine learning-based algorithms
are implemented to learn the performance and preference of
each vehicle and/or driver, where the algorithm outputs may
include prediction/guidance of their current status and future
behaviors.

Such algorithm outputs are downloaded from the Vehicle
Digital Twin to the vehicle, shown as the lower-right corner
of Fig. 5 “AWS-Unity Downlink Message”. By leveraging
computer vision technologies, this information is overlaid on
top of each vehicle through an augmented reality (AR) head-up
display (HUD) design, assisting the decision making of other
drivers [82]. As shown in Fig. 6, from this driver’s field of
view, the following information of the surrounding vehicles
and their drivers can be known (from top to bottom of the
overlaid information): driving proficiency score and its trend,
potential action (e.g., hard braking or lane change) and its
possibility, as well as driving mood score.

Compared to a traditional ADAS that relies on pure onboard
sensing and processing of the ego vehicle, the key advantages
that MDT brings to this cloud-based ADAS are:

• Heavy computations, such as training a machine learning
algorithm based on the sampled data, can be offloaded
to the cloud to utilize more computing power and hence
saves time.

• Additional data sources in the physical space, such as
surrounding vehicles and downstream traffic, can be
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Fig. 5. Human-in-the-loop simulation of the cloud-based ADAS based on
AWS, the Unity game engine, and the Logitech G29 Driving Force.

Fig. 6. Prediction and guidance information received from the Vehicle Digital
Twin on the cloud is visualized through an augmented reality (AR) head-up
display (HUD), which may include: driving proficiency score and its trend,
potential action (e.g., hard braking or lane change) and its possibility, as well
driving mood score.

utilized to enhance the functionalities of ADAS.
• The cloud-based ADAS can be easily migrated through

the cloud and hence increases accessibility, which can be
available on various vehicles for the same driver, or for
various drivers on the same vehicle.

• Updates of ADAS algorithms and applications can be
conducted much quicker and easier through OTA updates.

C. Traffic Digital Twin: Traffic Flow Monitoring and Variable
Speed Limit

This subsection introduces example micro-services of the
Traffic Digital Twin: traffic flow monitoring and variable speed
limit. A mobile app is built (both in iOS and Android versions)
to allow end users to upload their data from the physical space
to the digital space, which may include latitude, longitude, and
speed. At the initialization step of the app, the user is asked to
associate with a vehicle in the digital space, and also set the
data push rate. Once “START” button is pressed, the app will
get data from the mobile phone, and push that to the Vehicle
Digital Twin through AWS IoT Core. This app is adopted to
generate traffic flow and hence represents connected vehicles
traveling in the physical space.

When the traffic flow monitoring micro-service is turned on,
it gets the data from all Vehicle Digital Twins and aggregates
it in the Traffic Digital Twin. A demonstration of this micro-
service running in motion is shown in the snapshot Fig. 7(a).

(a) (b)

Fig. 7. (a) Traffic flow monitoring page of the web portal (digital space)
that visualizes the data received from end users (physical space); (b) Variable
speed limit based on geo-fences.

The count of all vehicles running on the specific link is
calculated, and then gets further divided by the link length
and number of lanes to get the traffic density value. This value
is compared with the pre-defined ranges of heavy congestion
(red), moderate congestion (orange), and no congestion (green)
to determine the traffic density on that link and gets repre-
sented in the corresponding color on the map. Additionally,
the different colors of vehicles visualized on the map indicate
their current speeds, where the ones traveling equal or below
the average link speed are shown in blue color, and the ones
above the average link speed are in white.

In order to better manage traffic flows in the physical space,
variable speed limits can be applied to connected vehicles
through the Traffic Digital Twin. As can be seen from Fig.
7(b), users can easily draw a geo-fence by specifying its
name, radius, latitude, and longitude of the center location.
A hexagon will then be visualized on the map, and users
are prompted to choose the rules that are applied to vehicles,
together with their states (“entry” or “exit”) and corresponding
values. Users can customize the settings of the variable speed
limit on the web portal, for example, setting the rule state
“entry” with a value “40” and another rule state “exit” with a
value of “60”. This setting indicates that all connected vehicles
which are subscribed to this micro-service will receive a speed
recommendation/limit of 40 mph when entering this geo-fence,
and 60 mph while exiting.

D. Personalized Adaptive Cruise Control with
Human/Vehicle/Traffic Digital Twins

This subsection conducts a case study of Personalized
Adaptive Cruise Control (P-ACC), a system which integrates
aforementioned example micro-services from Human, Vehicle,
and Traffic Digital Twins. Traditional ACC systems allow the



IEEE INTERNET OF THINGS JOURNAL, EARLY ACCESS 11

ego vehicle to travel at a set speed and/or maintain a desirable
gap with its preceding vehicle with the help of ranging sensors
like radars, however, they require drivers to manually adjust
speed and gap settings based on dynamic environments [83]–
[85]. They do not consider each driver’s personalized driving
style, and cannot account for the changes of environmental
factors, such as traffic conditions, road types, and weather
types [86].

As shown in Fig. 8, the P-ACC system is proposed with
an edge layer on the vehicle and a cloud layer with AWS.
While the computer on the edge layer (i.e., Nvidia Jetson
TX2) conducts some basic edge computing tasks to filter the
raw data generated by the vehicle CAN BUS, most computing
tasks are offloaded from the edge layer to the cloud layer
(i.e., AWS), where the Human/Vehicle/Traffic Digital Twins
get deployed.

Once the personalized driving data sampled from a driver’s
naturalistic car-following behavior gets filtered on the edge
layer and uploaded to the cloud layer, it is further classified
by the following Digital Twins:

• The Human Digital Twin, with the example micro-service
of driver type classification (aggressive, neutral, conser-
vative, etc.).

• The Vehicle Digital Twin, with the example micro-service
of vehicle type classification (ego/preceding vehicle being
a sedan, SUV, truck, etc.).

• The Traffic Digital Twin, with the example micro-services
of weather type classification (sunny, cloudy, rainy,
snowy, foggy, etc.), road type classification (rural, urban,
highway, etc.) and traffic type classification (congested,
moderate, light, etc.).

Aforementioned classifications can be conducted either by
simple rule-based algorithms or complex machine learning
algorithms [46]. Once the driving data is classified into various
clusters, the data in each cluster can be used by machine
learning algorithms to train a personalized driving model. In
this case study, the maximum entropy Inverse Reinforcement
Learning (Max-Ent IRL) algorithm [87] is adopted, where the
probability of a trajectory is proportional to the sum of the
exponential rewards accumulated along the trajectory:

p(ξ | α) = 1

Z(α)
exp
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t
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)

=
1

Z(α)
exp

(∑
t

αTΦ (st)

) (1)

where Z(α), called partition function, equals to∑
ξ exp (

∑
t Rα(t)). To recover the reward function, the

maximum log likelihood method is used at the demonstration
trajectories with respect to the weight of the reward function.
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α
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Then, the gradient of the weight α can be written in the
following form:
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Fig. 8. The Personalized Adaptive Cruise Control system integrates micro-
services from the Driver Digital Twin (yellow), the Vehicle Digital Twin
(orange), and the Traffic Digital Twin (red).

(a) (b)

Fig. 9. (a) Mass-produced vehicle that is used for the end-to-end latency test;
(b) A 10-minute trip conducted on Highway 237 in California to collect CAN
BUS data from the vehicle.

The first term,
∑

ξ p(ξ)
∑

s∈ξ Φ(s) = f̃ , is named expected
feature count. The second term,

∑
ξ Ds

∑
s∈ξ Φ(s) = f̄ , is

named empirical feature count, and Ds is the state visitation
frequency.

Based on the recovered reward function from the Max-Ent
IRL algorithm, the particular driver’s desired car-following gap
(e.g., 70 m) at each speed value (e.g., 35 m/s) can be calculated
by the following equation and then put into a look-up table:

ddes(v) = argmax
g

r(v) (4)

This ddes-v table is the trained driving model for the certain
cluster of driving data, which can be inferred in real time once
the driver/vehicle/weather/road/traffic type match.

A real-world end-to-end test is conducted, which utilizes
the CAN BUS data generated from a Lexus LS test vehicle
shown as Fig. 9(a), including 15 data fields such as position,
speed, acceleration, and so on. Time-series data generated by
naturalistic driving (i.e., Fig. 9(b)) gets filtered on the edge
and sent to AWS through edge communication module every
10 minutes. When the driver turns on the ACC feature, the
cloud layer infers the particular driving model trained with
the data in the particular driver/vehicle/weather/road/traffic
type, and pushes that model to the vehicle through the edge
communication module. ACC at this time will satisfy this
driver’s personalized car-following preference, and hence acts
as a P-ACC.



IEEE INTERNET OF THINGS JOURNAL, EARLY ACCESS 12

TABLE I
TAKEOVER RESULTS OF P-ACC COMPARED TO TRADITIONAL ACC

(PERCENTAGE OF TAKEOVER DURATION DURING A TRIP)

Driver P-ACC (Proposed) ACC (Baseline) Improvement

A 3.5% 18.5% 81.1%
B 1.5% 17.4% 91.4%
C 1.6% 12.0% 86.7%

Average 2.2% 16% 86.4%

TABLE II
LATENCY RESULTS OF PROCESSING 10-MIN CAN BUS DATA AND

QUERYING THE DATA LAKES

Data
Frequency

Uplink Data
Total Size

Uplink
Latency

Cloud Computing+
Downlink Latency

Overall
Latency

0.5 Hz 12 MB 1.4 s 16.1 s 17.5 s
1 Hz 24 MB 2.1 s 16.1 s 18.2 s
5 Hz 120 MB 10.6 s 16.1 s 26.7 s

10 Hz 240 MB 21.1 s 16.1 s 33.2 s

The benefit of the proposed P-ACC with the MDT frame-
work is quantitatively measured using the takeover percentage.
Takeover denotes the status where the driver steps onto the
acceleration pedal or brake pedal when he/she feels uncom-
fortable. The takeover percentage is the takeover time divided
by the overall P-ACC (or ACC in the baseline) activation time,
and the results are presented in TABLE I. Based on the test
results from three different drivers in different environments,
the takeover event happens 86.4% less frequently when drivers
use the proposed IRL-based P-ACC, compared to a traditional
PID-based ACC that purely relies on real-time on-board com-
puting.

The end-to-end latency results are shown in TABLE II,
indicating that under different sampling frequency of the CAN
BUS data, the uplink latency is relatively proportional to the
uplink batch size, with a minimum of 1.4 s for 12 MB and
a maximum of 21.1 s for 240 MB. However, the majority
of the end-to-end latency is made up by the aforementioned
cloud computing processes, which roughly takes 16 s under
different data frequency. This means once the P-ACC feature
is switched on by a driver, it needs a 16 s warm-up period to
get the corresponding IRL-based personalized model. During
this warm-up period, the baseline PID model can be run to
guarantee car-following safety.

In a nutshell, the end-to-end testing showcases the capability
of the proposed MDT framework to execute complex cloud
computing processes based on bulk uplink data within a ra-
tional range of latency, and the computing results improve the
performance of commercially available vehicle applications.
In real-time mobility applications like the ones shown in the
Human Digital Twin as Fig. 3, and in the Vehicle Digital Twin
as Fig. 5 and Fig. 6, where only a limited number of cloud
computing processes are executed based on the uplink data
stream, our MDT framework guarantees 80 ms as the medium
end-to-end latency to enable safety-critical and time-critical
applications [35].

VI. FUTURE CHALLENGES

In the future development and utilization of the Digital Twin
technology in both academia and industry, together with the
involvements of the connected vehicle technology and cloud-
edge computing, numerous challenges need to be addressed
from the perspectives of both research and engineering. Some
of the major challenges are discussed in this section with open
questions for future studies to solve.

A. Digital Twin Standardization

Although Digital Twin technology has gained momentum in
various domains during the past decade, there is no universal
definition of this technology, let alone existing standardization.
Currently, the joint technical committee “Internet of Things
and Digital Twin” of the International Organization for Stan-
dardization (ISO) and the International Electrotechnical Com-
mission (IEC) is still developing the standards for the Digital
Twin in terms of concepts and terminology [88], as well as use
cases [89]. Additionally, the specific standards for the Digital
Twin manufacturing framework are also under development by
the ISO technical committee “Industrial Data”, with focuses
on overview and general principles [90], reference architecture
[91], digital representation of manufacturing elements [92],
and information exchange [93].

Similar to manufacturing, specific standards need to be
developed for the transportation domain, so Digital Twin
technology can be fully deployed on the connected vehicles
we will be riding in the future. Such standards can be used by
different organizations to define APIs for Digital Twin data
access, enabling different transportation entities (e.g, human
drivers, vehicles, and traffic infrastructures) to securely and
reliably store, manage, and retrieve records. Related standards
can also help developers design Human Machine Interfaces
(HMI) to enable better interactions between physical and
digital spaces of the Digital Twin.

However, the standardization of the Digital Twin in the
transportation domain can face numerous challenges, since the
consensus may be difficult to reach across the public sector
(e.g., transportation agencies) and the private sector (e.g., auto-
motive manufacturers, suppliers, and network providers), sim-
ilar to the everlasting debate between Dedicated Short-Range
Communication (DSRC) and Cellular Vehicle-to-Everything
(C-V2X) communication for the communication technology
of connected vehicles.

B. AI for Cloud-Edge Computing Systems

Breakthroughs in AI techniques, including advanced ma-
chine learning algorithms and the availability of high per-
formance computing platforms, have recently received much
attention as a key enabler for edge AI, next-generation cloud
computing, and large-scale intelligent transportation systems.
Meanwhile, machine learning techniques, such as federated
learning, provide many new opportunities in the way we
optimize complex systems and manage different connected
services and system resources [94], [95]. However, the evo-
lution towards learning-based cloud-edge computing systems
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is still in its early stage, and the realization of its promised
benefits in our proposed MDT framework requires thorough
research and development.

For example, directly applying AI techniques in system
management might lead to significant performance degra-
dation due to the unpredictable management actions during
the training phase. Therefore, fundamental questions such as
how AI techniques can significantly complement the system
design and management of the MDT framework still remain.
Other open research challenges are how to collect high-
quality data that contain both system profiles and performance
metrics for training high-fidelity Digital Twins; how to design
AI and machine learning solutions with high generalization
ability that can adapt in the high-variance and dynamic traffic
circumstances; and how to enhance the robustness of AI-based
Digital Twin methods in real-world environments.

C. Public Cloud or Private Cloud

In this study, a public cloud-edge architecture has been
designed and deployed on AWS. However, this does not nec-
essarily mean our proposed MDT framework can only work
on AWS instead of other cloud platforms. Other commercial
platforms like Microsoft Azure (especially with its “Azure
Digital Twins”), GCP and Alibaba Cloud could also be the
alternatives to accommodate the MDT framework.

Nevertheless, a cloud platform must be trustworthy to
deploy any of the micro-services mentioned in this study
(especially for the ones related to the Human Digital Twin),
as end user information and related data need to be secured
from being compromised. The nature of public cloud platforms
inevitably gives away the control of resources to some extent,
which may introduce cybersecurity and privacy risks for end
users.

A private cloud platform, on the other hand, consists of
cloud computing resources used exclusively by one business
or organization. Since the services and infrastructure are
always maintained on a private network without sharing with
others, a private cloud platform can address the security and
privacy issues faced by a public cloud platform. Private cloud
platforms also make it easier for end users to customize
cloud resources to meet specific requirements and implement
specific functions, which was proved in our private cloud-
based cooperative ramp merging experiment [36].

Although private cloud platforms are more secured and
flexible, it has several disadvantages compared to public
cloud platforms. In general, private cloud platforms are more
expensive, since hardware and software should be dedicated
solely to particular organizations that they serve (and hence
paid solely by those organizations). In terms of scalability and
reliability, private cloud platforms are also outperformed by
public cloud platforms, because the public ones provide on-
demand resources to meet various organizations’ needs, and
also provide a vast network of servers to ensure against failure.

Therefore, based on specific requirements and needs of end
users, choices can be made between public and private cloud
platforms, considering their advantages and disadvantages
described above. Additionally, building Digital Twins with a

hybrid cloud approach (combining public and private cloud
platforms, potentially with edge/fog computing) provides an-
other possibility.

D. Heterogeneous Wireless Communication Environment

Future vehicular networks tend to be highly heterogeneous,
where a variety of radio access technologies, such as DSRC,
Wi-Fi, long-term evolution (LTE), and C-V2X, will co-exist in
the vehicular environment. DSRC has been widely deployed
in the past decades, which enables vehicles to communi-
cate with each other and road-side infrastructures directly,
without involving cellular or additional infrastructures. But
its drawbacks like low peak data rate and limited coverage
become the bottleneck for satisfying the quality of service
(QoS) requirements for many emerging micro-services of our
proposed MDT framework, such as cooperative perception,
HD map, and anytime OTA update, that require transmitting
a high volume of data in a short time window.

Although WiFi and LTE are capable of providing a larger
bandwidth and throughput, they require more sophisticated
mechanisms to tackle MDT management challenges incurred
by one of the traits of vehicles - high mobility. In contrast,
the more recent C-V2X technology is compatible with 5G and
could address the communication challenges due to vehicles’
high mobility. However, C-V2X is not affordable and widely
deployed compared with DSRC [96].

Therefore, network heterogeneity might be a promising
solution to tackle the challenges presented above and to
enable connected vehicles to achieve diverse QoS requirements
for our proposed MDT framework. However, multiple future
challenges might be imposed by the network heterogeneity:

• Maintaining a seamless connectivity within a heteroge-
neous network environment is challenging. Sophisticated
mechanisms for managing the connectivity across differ-
ent radio access technologies is desirable.

• Balancing the trade-off between latency and cost is
crucial. How to achieve a satisfactory latency with the
lowest overhead (e.g., data transmission cost and energy
consumption) is challenging.

• Connected vehicles heavily rely on data that is shared
with surrounding intelligent nodes, such as roadside units,
pedestrians’ devices, other vehicles. Open issues like how
to secure these shared data with cost-efficient solutions,
and what might be the role of cloud-edge computing
systems still remain.

VII. CONCLUSION

In this study, an Mobility Digital Twin (MDT) framework
has been developed for connected vehicles with the help of
cloud computing and edge computing. It has been found from
the literature review that, although the Digital Twin concept
has been recently studied in the transportation domain, there
is no related literature that leverages this technology together
with cloud-edge computing to benefit connected vehicles with
detailed micro-services. In this study, the proposed MDT
framework has been demonstrated with details regarding all
of its components: Human, Vehicle, Traffic, together with their
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associated Human Digital Twin, Vehicle Digital Twin, and
Traffic Digital Twin.

The public cloud service Amazon Web Services (AWS)
has been adopted in this study to design the cloud-edge
architecture, which deploys the MDT framework and makes it
a reality rather than a concept. To showcase the effectiveness
of the MDT framework, a case study of Personalized Adaptive
Cruise Control (P-ACC) has been conducted leveraging the
key micro-services of the MDT framework: user management
and driver type classification of the Human Digital Twin,
cloud-based Advanced Driver-Assistance Systems (ADAS) of
the Vehicle Digital Twin, and traffic flow monitoring and
variable speed limit of the Traffic Digital Twin.

In conclusion, scalability, reliability, security, cost, latency,
and fidelity are the key factors to consider when designing any
Digital Twin frameworks. Along with the rapid development
of the Digital Twin, it can be envisioned that more related
studies will be conducted in the mobility domain to tackle the
real-world challenges in the near future.
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