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Abstract— Adaptive cruise control has been an important
function in modern vehicles, and has proven to be helpful
for assisted driving. The main challenges involve accurate gap
prediction between the ego and preceding vehicles, as well
as personalizing the driving behaviour for different kinds of
drivers and/or cars. Correspondingly, in this paper, we make
the following contributions: (1) we propose GAPFORMER which
combines the Transformer and RNN architectures to better
model and personalize driving behaviour; (2) make necessary
modifications to the Transformer attention mechanism for
scaling to long driving contexts in a resource-efficient manner;
and (3) propose an architecture-agnostic model training regime,
HORIZON which improves generalization by incorporating a
time-horizon and makes the models more accurate and robust.
Detailed experiments on both public and proprietary datasets
demonstrate that GAPFORMER can be up to 50% more accu-
rate when compared to other ACC baselines, demonstrating its
efficacy and potential for real-world application.

I. INTRODUCTION AND BACKGROUND

A. Introduction

The emergence of Adaptive Cruise Control (ACC) systems
can be traced back to the last century, when automotive
companies started equipping their vehicles with ACC in
the late 90s [1]. The core concept of an ACC system is
to automatically adjust the ego vehicle speed to maintain
a safe gap from the preceding vehicle, with the help of
the perceived information from on-board perception sensors
(e.g., radar, LIDAR, and/or camera). However, commercially
available ACC systems only allow drivers to choose from
three or four pre-determined car-following gap settings (e.g.,
short, medium, long, and/or extra long), without considering
each driver’s preference in terms of driving and riding [2]–
[4].

To this effect, in this paper, we aim to personalize the
ACC functionality, where we want to dynamically infer the
user’s most preferable car-following gap based on a wide
list of covariates such as their previous driving interactions,
current weather, geography, etc. More specifically, we take a
data-driven approach towards personalized ACC, where we
build and learn a parametric model to estimate each driver’s
car-following preferences by learning from historical driving
data (see Figure 1 for an overview).
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B. Personalized Adaptive Cruise Control (P-ACC)

For ACC systems, physics-based policies are the most
dominant control policies at the current stage. Ordinary
Differential Equation (ODE) algorithms (e.g., Gipps model
[5], Intelligent Driver Model (IDM) [6], and Newell’s car-
following model [7]) are proposed to allow the ego vehicle to
follow the preceding vehicle’s movement based on a certain
set of parameters, such as the distance gap between two
vehicles and speeds of both vehicles. Model Predictive Con-
trol (MPC) is another popular physics-based algorithm for
ACC, which optimizes the predefined objectives (e.g., safety,
comfort, fuel efficiency, etc.) in a receding-horizon fashion
[8]. However, both ODE and MPC policies require prior
knowledge of the car-following system to design correspond-
ing algorithms, deeming both policies to be highly generic
and oftentimes difficult to personalize. Another limitation
of ODE and MPC policies is their lack of expressivity —
majority of the times, naturalistic human-driving does not
follow their premeditated set of rules and contains exquisite
nuances that cannot be captured by these algorithms.

More recently, learning-based algorithms have attracted
more attention in the research domain of ACC systems.
These methods generally perform better at driver trajectory
modeling than physics-based policies, and they are also less
restrictive and can be trained without any explicit assump-
tions about the car-following system. A major part of relevant
studies adopt Inverse Reinforcement Learning (IRL) to learn
the reward of the car-following demonstration trajectories,
and then use controllers to implement the recovered reward.
The works by Gao et al. [9] and Zhao et al. [10] both
show that their IRL algorithms are capable of recovering the
personalized car-following gap preference based on different
vehicle speed values, where this gap-speed matrix can be
used to design the downstream control logic for P-ACC
systems. Another category of relevant studies directly look
into the data and learn from the demonstration trajectories.
For example, Wang et al. developed a Gaussian Process
Regression algorithm for P-ACC, where both numerical and
human-in-the-loop experiments verify the effectiveness of the
proposed algorithm in terms of reducing the interference fre-
quency by the driver [11]. Additionally, because the decision-
making process of human drivers depends on sequential state
inputs, Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) were also adopted to model the car-



Fig. 1: System architecture of the proposed P-ACC framework. We train GAPFORMER-HORIZON on a collection of logged
human driving trajectories, and deploy it in real-world driving scenarios.

following behaviors [12], [13].

C. Sequence Modeling

The problem of naturalistic car-following trajectory mod-
eling overlaps substantially with that of user journey mod-
eling in the context of sequential recommender systems
and personalization [14]–[17]. The main source of input for
sequential recommendation is the chronological sequence of
every user’s interactions with a content delivery service like
Netflix, YouTube, etc.; which the model uses as context
to dynamically infer the user’s interests for the next-item
prediction. Historically, Markov-chain based methods like
FPMC [18], Fossil [19], etc. operated on the first-order
assumption that the next item for a user can be inferred
by just looking at the previous item they consumed. Conse-
quently, recent models like GRU4Rec [20], SVAE [15], etc.
propose to use an RNN to embed the entire user consumption
sequence.

More recently, the Transformer [21] architecture (origi-
nally proposed for NLP tasks such as large-scale language
modeling), has seen immense success in a wide variety of
general machine learning sequence-prediction tasks such as
NLP [22], recommendation [14], [23], Speech [24], etc.
However, their application to the field of driver trajec-
tory modeling is still unexplored. These models fundamen-
tally operate on the self-attention phenomenon [25] which
suggests that every item can be viewed as a complex,
dynamically-weighted function of the input sequence itself.
Self-attention also inherits the property of being natively
parallel (unlike inherently linear RNNs), thereby leverag-
ing the parallel processing capabilities of recent hardware
innovations like GPUs, TPUs, etc. However, attending to
all previous tokens for every token is a quadratic process
and hence takes O(n2) memory; this prohibits transformer-
based models from scaling to larger sequence lengths.
Consequently, another line of research focuses on scaling

up the transformer architecture by sparsifying the attention
connections, thereby allowing models to incorporate larger
context [26]–[28].

D. Contributions

Two prominent directions toward improving trajectory
modeling include: (1) building more accurate and more
robust driver trajectory models; and (2) since many of these
models will be deployed on edge devices—improving the
memory and run-time requirements of such models during
inference. To this effect, in this paper, we:

• Propose GAPFORMER which combines the sequence
modeling capabilities of a Transformer [21] and a Re-
current Neural Network (RNN) [29] for driver trajectory
modeling. Our experiments demonstrate that such a
combination leads to a better performance than using
RNNs or Transformers individually.

• Modify the core self-attention architecture of a naı̈ve
Transformer block by only attending to a fixed number
of previous tokens to ameliorate its O(n2) memory
complexity. This allows GAPFORMER to attend to
longer contexts, leading to better down-stream perfor-
mance while being significantly faster to train and infer.

• Propose HORIZON, which is a novel training regime for
any autoregressive architecture, and is especially bene-
ficial for our safety-critical task of trajectory modeling,
where the model should ideally plan for a distant future
horizon rather than predicting the optimal conditions
merely for the next time-step.

To validate our approach, we compare GAPFORMER with
a variety of baselines and state-of-the-art models on both
public and proprietary datasets. Experiments demonstrate
that (1) GAPFORMER can be up to 50% more accurate
compared to other ACC baselines; (2) GAPFORMER can be
an order of a magnitude faster at inference compared to the
vanilla Transformer; and (3) HORIZON boosts performance
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up to 15% across all architectures compared in this paper,
deeming HORIZON a suitable choice for training autoregres-
sive architectures.

II. METHODOLOGY

A. Problem Statement

Given a driver u along with his/her chronological sequence
of gap between the ego and preceding vehicles Gu =
(Gu

1 ,Gu
2 , · · · Gu

|Gu|) where Gu
i ∈ R+ ∀i ∈ [1, |Gu|]; along with

some environmental context sequence (e.g. weather, leader
speed, etc.) Cu = (Cu

1 , Cu
2 , · · · Cu

|Gu|) where Cu
i ∈ Rc ∀i ∈

[1, |Gu|]; predict the next, most optimal gap for the driver
i.e. Gu

|Gu|+1 ∈ R+.
An overview of our P-ACC framework is presented in

Figure 1, where we demonstrate how GAPFORMER can be
trained on the cloud and can be deployed for inference on
edge devices. Specifically for offline training, a collection
of driving trajectories are uploaded to a database on the
cloud, and GAPFORMER can be trained on these collection of
trajectories using a multi-GPU environment for accelerated
training. Then, the trained model is deployed for online
inference, where each vehicle’s current trajectory takes a
single forward pass through GAPFORMER, and the optimal
future gap is predicted. This output will serve as the input
of the downstream P-ACC control algorithm, which falls out
of the scope of this paper.

B. GAPFORMER: Fast Autoregressive Transformers meet
RNNs for Personalized Driver Trajectory Modeling

1) Embedding layer: Given the gap sequence Gu and the
context sequence Cu, we first transform both to have a fixed
length n, which we tune as a hyper-parameter. If |Gu| > n
we keep the most recent n actions, otherwise we pad both
Gu, Cu with the required number of padding elements (from
the left). Given the padded gap and context sequences, we
then concatenate them followed by an affine Multi-Layer
Perceptron (MLP) transformation to obtain an intermediate
representation:

Ŝu =
(
WT

e · (Gu
i || Cu

i ) + be | ∀i ∈ [1, |Gu|]
)
, (1)

where We ∈ R(c+1)×d and be ∈ R represent the parameters
of the embedding transformation, and ‘||’ represents the con-
catenation operation. Consequently, we also inject a learnable
position embedding, which is meant to inherently learn the
dynamics of different positions through an embedding matrix
Pe ∈ Rn×d to get the final input embedding Su = Ŝu+PT

e .

2) GRU: Given the embedded input sequence Su, we
employ a Gated Recurrent Unit (GRU) [29] to embed it in
a lower dimensional latent space. More formally, the GRU
maintains a hidden-state vector ht ∈ Rd for each time-step
in the sequence and updates it:

ht+1 = GRU(ht,Su
t ),

where GRU represents the standard set of update-gate and
reset-gate equations. We finally obtain a fixed-size repre-
sentation of the entire sequence by extracting only the last
hidden-state as processed by the GRU i.e. EGRU := h|Gu|.

3) Transformer: We re-use the same embedded input
sequence Su as input for the Transformer component as
well. We first perform multi-head attention [21] on Su by
splitting the input into multiple segments at each time-
step and applying attention to each of them individually.
After computing the attention function on each segment,
we concatenate the resulting vectors again to get the final
attentive intermediate representation Ha

t for each time-step.
More formally, given h heads:

Ha
t = [ head0 || head1 || . . . || headh ] ,

Su
t =

[
Su
t,0 || Su

t,1 || . . . || Su
t,h

]
,

headi = Attention(Su
t,i,Su

t,i,Su
t,i), (2)

Attention(Q,K, V ) = Softmax

(
Q ·KT√

d/h

)
· V (3)

Note that we do not use any further affine transformations
on the attention inputs Su

t,i in Equation (2) before sending it
to the Attention layer, as we otherwise noted large amounts
of model overfitting in our experiments. We also point out
that we explicitly mask the attention matrix in Equation (3)
with a lower triangular matrix to not include connections
for future time-steps and maintain causality. Note however,
that the overall process in Equation (3) is still linear. To
this end, Transformer adds a series of non-linear, residual,
feed-forward network layers to increase model capacity, as
follows:

Ht = Ha
t +Hn

t ,

Hn
t = Conv2(ReLU(Conv1(Ha

t ))), (4)

where Conv1 and Conv2 are parametrized by different bi-
linear parameters W1,W2 ∈ Rd×d. We finally obtain a fixed-
size representation of the entire sequence by extracting only
the last hidden-state as processed by the Transformer i.e.
ETransformer := H|Gu|.

4) Linear self-attention: Even though the Transformer ar-
chitecture has seen success in a wide variety of applications,
it is still inherently quadratic and requires O(n2) memory
as demonstrated by Equation (3) where there is a Softmax
call over an n × n attention matrix. Inspired by recent
literature [26], [27], which suggests that only a relatively
short window of previous token connections are needed for
generalization in the Transformer architecture, we follow a
sliding-window based attention restriction mechanism that
only attends to χ previous elements for every element in
the sequence. We provide a visualization of our restriction
mechanism in Figure 2. This provides us with major benefits
like: (1) better downstream generalization and performance
of GAPFORMER; and (2) linear memory requirements during
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training and inference allowing GAPFORMER to scale to long
driving trajectories (see Figure 5 for further details).
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Fig. 2: Comparison of vanilla transformer attention vs. GAP-
FORMER’s attention for an input sequence of size N , χ = 3.

5) Fusion layer: Even though ETransformer can be computed
in a compute-efficient manner, it still lacks very distant con-
text by design, and trades-off context length with compute-
efficiency. To this end, we propose to combine ETransformer
with EGRU, which does have access to the entire driving
trajectory. We argue that this allows GAPFORMER to enjoy
the best of both worlds — have a very sophisticated modeling
of the shorter driving context (ETransformer), and an easy-to-
scale representation of the distant context (EGRU); thereby
allowing the final context representation to be highly accurate
and yet easy-to-scale. More formally, to obtain the final
context representation, we dynamically infer the importance
of the GRU and Transformer architectures’ embeddings, by
learning two scalar parameters α, β ∈ R and performing a
weighted average:

E = (α′ · EGRU) + (β′ · ETransformer) , (5)
[α′, β′] = Softmax([α, β])

Having represented Su in a small latent-space by E ∈ Rd,
we now perform a series of non-linear affine transformations
to predict the desired gap at the next time-step:

Ĝu
|Gu|+1 = Gu

|Gu| +∆u, (6)

∆u =
(
FT
2 · ReLU(FT

1 · E + b1)
)
+ b2, (7)

where F1 ∈ Rd×d, F2 ∈ Rd×1, and b1, b2 ∈ R represent
the parameters for decoding E to predict the desired gap.
We also want to point out that we predict the change in gap
from the previous time-step rather than the exact gap itself
(Equation (7)), as doing so eliminates redundant learning and
directly focuses on our driver trajectory modeling task.

6) Optimization problem: Having discussed the details
about GAPFORMER’s architecture, we now discuss how its
parameters are optimized. To simplify notation let ϕθ :
(Gu, Cu) → R represent GAPFORMER. We optimize θ to
minimize the point-wise MSE between the predicted and

actual gaps:

arg min
θ

∑
u∈U

|Gu|∑
t=1

(
ϕθ(Gu

1:t, Cu
1:t)− Gu

t+1

)2
+ λ · ||θ||22 (8)

Where U represents the set of all drivers in our dataset,
Gu
1:t, Cu

1:t represent the gap and context trajectories for driver
u up to the tth timestep respectively, and λ is a regularization
constant. We will optimize Equation (8) through standard
mini-batch SGD.

7) Personalization: As we can see, there is no explicit
driver representation in GAPFORMER. Previous work in the
personalization literature either suggests the usage of (1)
explicit user embeddings U ∈ Rn×d, where we estimate a
fixed d−dimensional representation for each of the n users
in the dataset [30], [31]; or (2) implicit user modeling where
we represent the user directly by the set of items they
consume [14], [15], [23]. GAPFORMER follows the implicit
user modeling strategy as the driver is strictly represented by
their historical driving trajectory, and we aim to mine subtle
driver traits directly from sequential information.

C. HORIZON: A Training Regime for Autoregressive Models

The core idea in HORIZON is to train the autoregressive
model to predict the distance gaps for a fixed horizon of
κ−steps in the future, rather than just the next timestep.
The motivation for HORIZON is also relatively straightfor-
ward — we are forcing the model to learn the long-term
trajectory dynamics and driver traits, rather than greedy next-
gap prediction. An added benefit of HORIZON is that it
will provide more gradient for better generalization, while
being more stable and faster to converge. More formally,
we change: (1) the decoder architecture in Equation (7), to
predict for κ−steps in the future rather than 1, by changing
the dimensionality of F2 ∈ Rd×1 → F2 ∈ Rd×κ; and (2) the
optimization problem in Equation (8) to the following:

arg min
θ

∑
u∈U

|Gu|−κ∑
t=1

κ∑
i=1

(
ϕθ,i(Gu

1:t, Cu
1:t)− Gu

t+i

)2
+ λ · ||θ||22

(9)

Where ϕθ,i represents the ith output of ϕ. Note that HORIZON
is generic and can be applied to any autoregressive model as
long as it predicts future events through some set of learnable
parameters.

III. EXPERIMENTS

A. Data

To evaluate the performance and robustness of GAP-
FORMER and HORIZON, we experiment on a public real-
world, and a proprietary synthetic dataset:

• Open-ACC [32]: It is a popular car-following dataset
originally intended to better understand the ACC char-
acteristics of modern vehicles. Instead of the regular ego
and preceding vehicle setup, Open-ACC collects data
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Fig. 3: Gap and vehicle speed distributions of both datasets.

TABLE I: Brief statistics of the datasets used in this paper.

Trajectories

Dataset Num. Avg / Median Sampling Simulatedlength Freq.

Open-ACC 46 8.6k / 5.5k 10 Hz ×
Proprietary 20 2.4k / 2.7k 10 Hz Yes

where a platoon of vehicles are following each other.
To convert the vehicle-platoon setup in Open-ACC to
the ego and preceding vehicle setup we need for our
experiments, we consider all vehicle trajectories in the
platoon independently, giving us n − 1 trajectories for
each platoon trajectory of n vehicles.

• Proprietary: We also synthesize realistic data from
an in-house, human-in-the-loop game engine built in
previous work [33] over the Unity [34] platform. More
specifically, we ask five different drivers to generate car-
following data by either driving a midsize sedan or an
SUV under varying weather conditions. We simulate
clear, cloudy, foggy, and storm conditions as settings in
the Unity game.

The driving trajectories for both datasets are sampled at
10Hz and characteristics like the vehicle type, current speed,
lead-vehicle speed, distance gap, and time-gap are logged.
Note that the weather is also available for the proprietary
dataset. From Figure 3, we observe that both datasets follow
very similar gap and speed distributions, with the major
difference being only in the amount of total data and average
size of the driving trajectory as compared in Table I.

We preprocess the data to only include those contextual
features which are not directly dependent on the logging
policy i.e. the lead vehicle speed, current weather, and
vehicle type, and remove features like ego-vehicle speed,
acceleration, etc. This is because these features share a
causal link by the gap predictions our models make and will
otherwise cause data-leakage when making predictions for
our models. To the best of our knowledge, this seems like a
limiting factor for any auto-regressive model, and incorpo-
rating these crucial, model output-dependent features seems
to be an important avenue for future work. We then split
both datasets into 80/10/10% train/test/validation portions,
respectively. More specifically, to retain the sequential nature
of our data, we split each driving trajectory to have the first
80% of sequence to be in the train-set, next 10% to be in
the validation-set, and the last 10% in the test-set. We also
normalize all our features to follow a normal distribution
since they can be arbitrarily large, but un-normalize the
models’ predicted gaps while reporting results.

B. Evaluation Metric

To compare the performance of different models for our
task of driver trajectory modeling, we employ an RMSE-
based prediction horizon evaluation scheme, commonly seen
in the P-ACC literature [35], [36]. More specifically, given
a gap prediction function ϕ : (Gu, Cu) → R, we define our
metric of interest RMSEmean as:

RMSEmean =
1

τ
·

τ∑
t=1

RMSE@k, (10)

RMSE@k =

√∑
u∈U

(
ϕt(Gu, Cu)− Gu

|Gu|+t

)2
,

where τ represents a fixed prediction horizon we want to
evaluate our model on (we fix τ to be 100 ≃ 10s for our
experiments), U represents the set of all drivers in our test-
set, and with a slight abuse of notation, ϕt(Gu, Cu) represents
the prediction made by ϕ for the tth time-step in the future.

C. Baselines

We compare our models with a wide set of baselines and
competitor state-of-the-art methods as discussed below:

• Copy: This is the most practical baseline which main-
tains the same gap between the ego and preceding
vehicles, irrespective of any context.

• Linear: This baseline is a smarter heuristic compared to
the Copy-baseline, which continues making a step in the
same direction, by the same amount, as the driver did
before the current time-step. More formally, we predict
the gap Ĝu

|Gu|+t = Gu
|Gu| + t · (Gu

|Gu| − Gu
|Gu|−1).

• MLP: Recent work proposed using a 3-layer MLP
architecture for lane-change prediction [37]. We adapt
their model to our task of gap-prediction by optimizing
their architecture with the L2-regression loss mentioned
in Equation (8). We note that this model is equivalent to
the Markovian assumption i.e. the gap for a future time-
step can be predicted by looking only at the previous
time-step.

• RNN: Recent work in driver trajectory modeling [35]
suggests using the Long Short-Term Memory (LSTM)
architecture to predict the optimal acceleration for a
driver. For the sake of comparison, we adapt their archi-
tecture to predict the gap rather than the acceleration.
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TABLE II: RMSEmean values for all methods on both datasets. The best method for each dataset is highlighted. Methods
ending with * are proposed in this paper.

Baselines Non-sequential Sequential

Dataset Copy Linear MLP MLP RNN Trans- GAP- RNN Transformer GAPFORMER
HORIZON former* FORMER* HORIZON HORIZON * HORIZON *

Open-ACC 5.9707 4.4492 5.0851 4.7169 3.2906 3.5557 3.4146 3.1067 3.0031 2.927
Proprietary 4.9821 6.9529 4.4467 4.2437 4.3217 4.1989 4.1522 4.2167 4.1154 4.077

This architecture has been shown to work extremely
well for driver trajectory modeling, represents the cur-
rent state-of-the-art.

• Transformer: We also include the architecture where
we solely use the Transformer component of GAP-
FORMER as a competitor. Note that in this model we
still use the linear self-attention mechanism proposed
in Section II-B.4, and not the vanilla Transformer’s
quadratic self-attention.

In addition to the aforementioned models, to demonstrate
the efficacy of HORIZON as an architecture-agnostic train-
ing regime for autoregressive models, we also compare
GAPFORMER with MLP-HORIZON, RNN-HORIZON, and
Transformer-HORIZON wherein we train the corresponding
architectures with the HORIZON loss mentioned in Equa-
tion (9).

D. Experiments

For fair comparison across algorithms, we perform an ex-
tensive grid-search over various hyper-parameters like latent
size d, L2-regularization constant λ, SGD learning rate,
HORIZON’s κ, attention’s sliding window length χ, and the
maximum driving trajectory length. We now discuss our
main research questions.

How do different models compare with each other?
In Table II we compare the performance of GAPFORMER
with the different models discussed in Section III-C on both
the Open-ACC and Proprietary datasets. We first note that
both non-sequential and sequential models improve over the
popular baselines, and that sequential methods outperform
non-sequential methods by a significant margin. Next, we
observe that GAPFORMER-HORIZON outperforms all other
methods across datasets on the RMSEmean metric. This goes
to show that combining the short-term modeling of the
Transformer, along with the long-term modeling of the RNN
(Section II-B.5) helps GAPFORMER get the best of both
worlds, thereby being more accurate than both architectures
individually. Finally, we also note that HORIZON signifi-
cantly improves model performance across architectures, and
shows consistent gains for the MLP, RNN, Transformer, and
GAPFORMER architectures on both datasets.

Across how distant of a horizon can models generalize well?
To better understand the variability and generalization pat-
terns of different models, instead of comparing them solely

on RMSEmean, we stratify the model evaluation for different
numbers of time-steps in the future horizon, and compare
the respective RMSE@k values as plotted in Figure 4.
There are a few prominent observations to make. Firstly,
the Linear baseline starts off as a good heuristic but as we
stretch our prediction horizon, it becomes increasingly worse.
Next, we notice that RMSEmean corresponds quite well with
overall model performance across different horizons, which
can be evidenced by the performance lines for different
models staying in agreement with each other for a majority
portion of the prediction horizon. Finally, it becomes evident
that HORIZON significantly helps the generalization of all
the model architectures we consider in this paper. To be
more specific, the models and their HORIZON versions are
initially similar but the difference in generalization increases
significantly as we predict for a distant horizon.

How does GAPFORMER’s sparse attention affect perfor-
mance and inference?
To compare the effect of the sparse attention mechanism as
visualized in Figure 2, we plot the performance (RMSEmean),
memory footprint, and inference time of the linear and
vanilla Transformers vs. the driving trajectory sequence
length in Figure 5. We note that as we increase the sequence
length (1) the performance of the linear transformer improves
due to more context, whereas the vanilla transformer dete-
riorates (perhaps because of overfitting); and (2) the GPU
memory requirements as well as the inference time increases
drastically for the vanilla transformer making the architec-
ture impractical for deployment on the modest amount of
computation available even for a modern vehicle.

How do different models respond to perturbed inputs?
We conduct an experiment where we test the three
best performing models i.e. RNN-HORIZON, Transformer-
HORIZON, and GAPFORMER-HORIZON under different
kinds of input perturbations on the Open-ACC dataset. More
specifically, we first change the driving trajectory context
of a randomly sampled driving trajectory to be a different
vehicle and see how the trained models’ predictions change.
As we can see from the models’ predictions visualized in
Figure 6, the models do learn to personalize their predictions
for different kinds of vehicles. For example, the models
unanimously predict a shorter gap for a Mini-Cooper (sub-
compact vehicle) vs. a larger gap for the Tesla Model-X
(SUV). We repeat the same procedure but now perturb the
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Fig. 6: Model predictions when the inputs are perturbed to (left) be different vehicles, or (right) have different leader speeds.

context to have a different lead vehicle speed. Similarly,
we observe that the models again try to collectively predict
a larger gap when the leader is at a higher speed vs. a
smaller gap when at a lower speed. This phenomenon seems
to be captured most prominently by GAPFORMER, again
demonstrating its effectiveness over other state-of-the-art
models.

IV. CONCLUSION

In this paper, we proposed GAPFORMER which efficiently
combines the Transformer and RNN architectures for our
task of personalized driver trajectory modeling. We also
propose HORIZON, which is a novel training regime for auto-
regressive models and we empirically demonstrate its effec-
tiveness for a variety of model architectures. Experiments on
two public and proprietary datasets demonstrate that GAP-
FORMER can be up to 50% better than other ACC baselines
while also being an order of magnitude faster at inference
compared to the vanilla Transformer. Additionally, we note
that HORIZON improves generalization across architectures
and can result in up to 15% performance gains by itself.

V. FUTURE WORK

For future work, we aim to further explore how to include
policy-dependent contextual features like ego-vehicle speed,
acceleration, etc. while predicting the future gap. This is a
challenging problem as these features share a direct causal
link with the autoregressive model’s prediction outcome.
Other important avenues we would like to explore in the
future include adding more robust and expressive features
like live driving feed, GPS, time-of-day, etc.
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