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Abstract—Platoons are vehicle formations that allow better
traffic management and safety. Although many efforts have
been devoted to implement platooning, ensuring stability in the
presence of misbehavior remains a challenge. The detection of
the misbehavior is important, otherwise it may put the platoon
as well as other vehicles in danger. In this paper, we propose
an edge assisted misbehavior detection system for vehicular
platoons where speed/acceleration information of platoon and
observation from other connected entities are leveraged to detect
the misbehaving vehicle(s). Extensive simulation in different
settings shows that our proposed method can improve the mis-
behavior detection rate compared to existing baseline method.

I. INTRODUCTION

Advances in the automotive industry are propelling the
development of vehicles into higher levels of autonomy.
This is evidenced by the availability of Level 2 Automation
(Society of Automotive Engineers) technologies, such as
Adaptive Cruise Control (ACC), in recent consumer vehicles.
ACC increases fuel efficiency, driver comfort, and safety over
human drivers by automatically adjusting the safe following
distance and speed based on sensor feedback [1].

C-ACC is an extension of ACC which leverages vehicle-
to-vehicle communication to make decisions cooperatively.
This communication includes sharing the operating state of
vehicles, such as speed, acceleration as well as distance
from surrounding vehicles. C-ACC enables vehicles to be
organized into close proximity formations called vehicular
platoons [2]. Platooning allows for more efficient transporta-
tion as the cooperation among vehicles enhances their ability
to plan ahead and drive closer than normal vehicles with
small speed and distance variation [3].

One key objective of the vehicular platoon is platoon
stability. A platoon is said to be stable if platoon followers
follow the leader with minimal speed variation over time [4].
To ensure platoon stability, several methods [5]–[7] have been
proposed with the assumption that trustworthy communica-
tion exists among vehicles. However, it has been demon-
strated that malicious attacks on communication can severely
degrade the performance of C-ACC and the stability of
platoons [8], [9]. The Vehicular Ad Hoc Network (VANET)
community have proposed security standards (i.e., IEEE
1609.2), which provide mechanisms against common external
attacks and ensure message integrity and authenticity. In
contrast, the case where the adversary is a trusted insider,
such as compromised platoon members, are not addressed
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by the standards. Recently, a data-driven abnormal behaviour
detection method is proposed for safeguarding the vehicular
platoons in [10]. However, the proposed method suffers from
artificial anomalies due to its uncooperative detection scheme
where each vehicle runs the misbehavior detection algorithm
independently.

On the other hand, edge computing is one of the techniques
proposed to detect misbehaving vehicles [11], [12]. The
edge layer performs trust model construction to detect the
misbehaving vehicle as well as the trustworthy vehicles
in [11]. [12] leverages traffic surveillance videos recorded
by Drones to detect abnormal activities by identifying the
vehicles and their trajectories. However, these approaches
are not directly applicable to platoon and have the following
drawbacks. First, trust value is computed based on predefined
events in trust-based detection scheme and this scheme may
suffer from event sparsity where it is misleading in trust
value computation and trustworthy vehicle election. Second,
extracting vehicle state information from transmitted video
in order to detect anomalies may introduce large delays and
overhead which is not tolerable in the time-critical vehicular
platoon. Third, the method relies entirely on the availability
of the edge layer.

In this paper, we investigate an edge assisted misbehavior
detection scheme for vehicular platoon. The proposed method
has the following properties: 1) it detects misbehaving vehi-
cle(s) in a platoon in real-time. 2) it performs better at the
edge when observations from connected entities (vehicles,
RSUs, etc.) are available. 3) it requires neither large training
data with prior knowledge, nor definition of normal behavior.

II. PRELIMINARIES

A. System Architecture

Fig. 1 illustrates a high-level overview of the proposed
misbehaviour detection system. We distinguish different sys-
tem components into three layers. At the vehicle layer, there
exist both platooned and non-platooned connected vehicles.
We assume that each vehicle in the platoon is capable of com-
municating with other connected entities through the vehicle-
to-X (V2X) (e.g., IEEE 802.11p and/or LTE) communication.
It can then process and store communicated data received
from these entities.

Platoon stability is achieved by the periodical exchange of
beacon messages. The beacon message may contain a pla-
toon identifier, lane identifier, sequence number, acceleration,
speed, position, and sender address of the transmitter. Upon
reception of the beacon message, a platoon follower adjusts



Fig. 1: Edge Assisted Misbehaviour Detection System

its own speed and distance to the preceding vehicle based on
the speed and acceleration information of the vehicle itself
and its preceding vehicle.

In the edge computing network, Roadside Units (RSUs)
and cellular Base Stations (BS) are connected to an edge
server over broadband connections, which forms an edge-
cloud layer [13], [14]. We assume that the edge layer collects
information about the platoon through beacon messages and
observations from other connected entities. Beacon messages
are broadcasted by platoon members and received by RSUs
or BS via V2X. Observations, on the other hand, are gen-
erated by other connected entities (non-platooned connected
vehicles, cameras and other sensors) and are composed of
estimates of speed, acceleration, platoon length, etc.

B. Misbehaving Vehicles in a Platoon
We assume that the misbehaving vehicle (adversary) is

a trusted insider, which is either a platoon follower or a
leader that affects platoon stability by modifying the beacon
messages: upon receiving a beacon message, the misbehaving
vehicle alters the content (the acceleration and speed values
are modified) and re-broadcasts. The re-broadcasted beacon
message contains false information which degrades the pla-
toon stability and jeopardizes the safety of other vehicles as
well as the efficiency of the transportation system. Consider
a scenario where the adversary modifies the acceleration
of platoon from slowing down to speeding up, which may
induce a chain of accidents. Though we label the misbehaving
vehicle as an adversary, it is important to note that such
behavior may arise due to non-malicious phenomenon, such
as malfunction or sensor failure.

III. MISBEHAVIOUR DETECTION METHOD

In this section, we first present our time-series-analysis-
based misbehavior detection method which can be applied
on either the vehicle individually. Then, we further discuss
the combined misbehavior detection with edge layer through
the observations that are collected via the vehicular edge-
computing network.

A. Time Series Analysis based Misbehaviour Detection
Consider Vs and Vr to be two vehicles in a platoon

such that Vr trusts Vs and reacts based on information

received from Vs. Xs and Xr represent time series formed by
information related to Vs and Vr, respectively. Algorithm 1
runs with the input of vehicle’s speed or acceleration values
to detect the misbehavior(s).

Algorithm 1: Misbehaviour Detection

1 Initialize: k ← 0, k∗ ← 0, empty time series Xs, Xr ;
2 Start to collect time series data Xs, Xr at time τ0 ;
3 while |Xs| < τ or |Xr| < τ do
4 Add collected data to Xs, Xr;

5 repeat
6 if ∀ k′ ∈ [0,min(|Xs|, |Xr|)/2] ∩ [k − ε, k + ε] ⇐⇒

L(Xs,Xr, k) ≤ L(Xs,Xr, k
′) then k∗ ← k;

7 else k ← k + 1;
8 until k ≥ min(|Xs|, |Xr|)/2 or k∗ > 0;
9 X ← Xs(k

∗, τ − k∗)−Xr(τ0, τ − k∗) ;
10 Apply moving median filter to X , and get X̄ ;
11 Compute residual Rx = X − X̄ ;
12 Xout ← ESD(Rx, Nm) ;
13 Return Xout ;

Let As(τ0, τ), Ar(τ0, τ) be the ordered list of acceleration
collected in a window of length τ for Vs and Vr, respectively.
Ar[t] and As[t] are the acceleration of the Vs and Vr at the
time t, where t ∈ [τ0, τ0 + τ ]. Algorithm 1 runs on As, Ar

as input Xs, Xr to detect the misbehaviour(s). The algorithm
starts by collecting time series data (Line 1-4). In normal
cases, the shape of Ar follows As smoothly with a time
delay. With the occurrence of misbehavior(s), on the other
hand, the relationship between the two time series data may
become abnormal. The basic idea of our method is to identify
the misbehavior by exploring the difference between As and
Ar. However, As and Ar may contain different number of
elements due to 1) various data generation frequency among
vehicles, and 2) packet loss caused by communication. These
causes of anomaly fall out of the scope of this paper. On
the other hand, As[t] and Ar[t] can be significantly different
because of reaction and communication delays. Therefore, we
pre-process the data to eliminate this difference (Line 5-10).

Let k represent the shifting length, such that Xs(k, τ − k)
and Xr(τ0, τ −k) are sub-sequences of Xs and Xr. Function
L returns the distance of two sub-sequence as follows,

L(Xs,Xr, k) = D(Xs(k, τ − k),Xr(τ0, τ − k)) ,

D(Xs,Xr) =
1

n

√√√√ n∑
i=1

(Xs[i]−Xr[i])2 ,

where |Xs(k, τ − k)| = |Xr(τ0, τ − k)| = n. D(·, ·) is the
normalized Euclidean distance between two time series. We
want to select a k∗ ∈ [0,min(|Xs|, |Xr|)/2] such that when
comparing the differences between two time series, the first
local minima is reached at shifting size k∗.

With the selected k∗, two sub-sequences are generated
through shifting from the original times series data. Then,
we can obtain the new time series X , which is the point-to-
point difference between the two sub-sequences (Line 10).
We compute the trend component, X̄ , by applying a moving
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Fig. 2: Speed Profile of Platoon Followers Under Misbehaviour (left), Misbehaving Vehicle Characteristics (right)

median filter to X , then subtract the trend component from
X to get the residual Rx (Line 11-12). Following that,
the Generalized Extreme Studentized Deviate (ESD) [15]
is run on Rx to detect misbehaviors (Line 13). ESD takes
the parameters the residual and the upper bound of on the
number of potential misbehaviour, Nm. After ESD execution,
misbehaviour(s) is detected and added to Xout. Xout consists
of the simulation time and the abnormal values from the
misbehaviour.

B. Edge Assisted Misbehavior Detection

Algorithm 1 can be run by platoon members individually to
detect the misbehaviour. However, it has been shown that run-
ning misbehavior detection individually can be insufficient.
On the other hand, the observation of platoon members from
other connected entities at the edge layer may improve the
misbehavior detection.

On the edge server, observations related to platoon are
collected through other connected entities. We assume that
connected vehicles have on-board sensors (e.g., camera,
radar, and sonar, etc.). On-board sensors can measure odo-
metric parameters such as distance to the preceding vehicle
(with an additive white Gaussian noise on the observed
parameters) [16]. It is assumed that the edge server is capable
of associating the beacon messages with speed observations.
For vehicles Vs and Vr, observed speeds form two time
series Os(τ0, τ) and Or(τ0, τ) for time window τ . Then,
Algorithm 1 is run with inputs Os(τ0, τ) and Or(τ0, τ) on
the edge server.

We balance the misbehaviour detection results from indi-
vidual vehicles, Â(τ0, τ), and from observations, Ô(τ0, τ),
using a weighted voting strategy. If a misbehavior is detected
by an individual vehicle at time t ∈ [τ0, τ0 + τ ], Â[t] = 1,
otherwise, Â[t] = 0. Ô follows the same scheme. Consider
Â[t] and Ô[t] as two voters for t ∈ [τ0, τ0 + τ ], the voting
scheme can be described as [Q : wÂ, wÔ]. Q is the quota
of votes, which indicates the number of votes needed to
determine the existence of the misbehaviour at t. wÂ and
wÔ are weights for Â and Ô, which represents the number
of votes, respectively. The value of wÂ and wÔ can be based
on the current vehicular network condition, including sensor
quality of service, network connection, etc. For instance, we
can set wÂ and wÔ to 1 to equally weight both sides. On the

other hand, Ô may get higher votes if the vehicle in a platoon
is observed by multiple connected vehicles as compared to
observations by only one connected vehicle.

IV. PERFORMANCE EVALUATION

We have conducted a simulation study to investigate the
feasibility of proposed misbehaviour detection methods. The
goal of the simulations is to compare the performance of
proposed individual and edge assisted version of misbehavior
detection schemes, denoted by Individual and Edge-Assisted,
to the previously proposed baseline misbehaviour detection
method, denoted by ESD [15].

A. Simulation Setup

The acceleration and speed observations are collected via
simulation in VEhicular NeTwork Open Simulator (VEN-
TOS) [17]. VENTOS is a simulator integrating realistic mo-
bility generator, Simulation of Urban Mobility (SUMO) [18];
the packet level simulator, OMNET++ [19] and vehicular
communication platform Vehicles in Network Simulation
(Veins) [20]. Time series analysis and misbehavior detection
schemes are implemented in Python and integrated with
VENTOS. The simulated topology consists of 20 connected
vehicles (3 of them are platoon enabled) and vehicles are
injected into the road according to the Poisson process at a
rate of 0.5 vehicles per second rate. A platoon consists of 3
vehicles and Vehi refers to i-th vehicle in the platoon, with
Veh1 as the Leader. The vehicles possess two communication
interfaces: IEEE 802.11p and LTE. In the simulation, the
leader, Veh1 is misbehaving where it manipulates the accel-
eration fields of beacon message. Figure 2 demonstrates the
speed profile of platoon followers under misbehaving vehicle
and it shows the misbehavior characteristics.
B. Results and Analysis

We conduct 6 case studies by considering various window
sizes (τ ∈ {0.8, 1, 2, 5, 10, 50} seconds). The system alerts
the occurrence of a misbehaviour if Â[t] = 1 and Ô[t] = 1
at any time.

The results of detection rate is averaged over 100 Monte
Carlo trials, each of which contains different misbehaviour
characteristics in terms of occurrence time and duration.
Results are given in Table I where two cases τ = 1 s and
τ = 2 s are shown in Fig. 3. The simulation results suggest
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Fig. 3: Misbehaviour Detection Rate for τ = 1 second and τ = 2 seconds

that the proposed Edge Assisted method can detect the oc-
currence of altered beacon messages from the misbehaviour
with a success rate near 98% and small standard deviation.
For each selected window length, the Edge Assisted method
outperforms the Individual and baseline approach ESD. This
results reveal the benefit of cooperative misbehaviour detec-
tion at the edge layer. The Edge Assisted utilizes not only the
values from platoon members but also the observation from
other connected entities which improves the detection rate of
altered beacon messages.

TABLE I: Misbehaviour Detection in Different τ

Edge Assisted Individual ESD
τ (s) mean std mean std mean std
0.8 0.980 0.003 0.980 0.004 0.967 0.005
1 0.981 0.004 0.957 0.005 0.947 0.011
2 0.981 0.003 0.952 0.007 0.977 0.004
5 0.977 0.004 0.931 0.012 0.975 0.004
10 0.974 0.006 0.932 0.012 0.961 0.004
50 0.970 0.005 0.966 0.007 0.961 0.004

Moreover, Edge Assisted is more robust than ESD to
changes of window length where its accuracy range is
between [0.970, 0.981] for τ ∈ [0.8, 50] seconds, whereas
the accuracy range is [0.947, 0.977] for ESD. The perfor-
mance with small window length enables fast response to
misbehaviour especially in time-critical vehicular platoon.

V. CONCLUSION AND FUTURE WORK

We investigated an edge assisted misbehavior detection
method to identify the misbehaving vehicle(s) and its altered
beacon messages in a platoon. The simulation results for
different settings show that the proposed method outperforms
the existing methods, and achieves the detection rate near
98%. Besides, with a window length of 0.8 second, our
method achieves near-real-time detection of vehicle misbe-
havior without large training dataset and prior knowledge.
The fast detection is beneficial in terms of revocation mech-
anism where the rogue vehicles are removed from platoon
membership.

Future work would concentrate on testing the proposed
method in an experimental setting to study the impact of
sensors noise and network speed. We aim to focus on
designing an edge assisted platoon revocation mechanism
which removes the misbehavior from platoon membership.
Moreover, we plan to evaluate the performance of misbehav-

ior detection in platoon maneuvers, such as entrance and exit,
in which platoon is more vulnerable than usual.
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