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Abstract— The success of Intelligent Driver Assistance (IDA)
depends on the system’s ability to accurately model the state of
traffic surrounding the ego vehicle and predict driving behavior
of the surrounding vehicles in order to help the ego driver
make the best informed decisions in real-time. The ability to
predict acceleration behavior is crucial as a first step towards
modeling traffic patterns. In this paper, we show that Long
Short-Term Memory (LSTM) neural networks are capable
of producing acceleration distributions from which accurate
future acceleration values can be sampled. Furthermore, state
values calculated from these acceleration predictions are used
as input for future predictions, showing that these networks
are capable of generating realistic simulated vehicle trajectories
over short prediction horizons.

I. INTRODUCTION

Intelligent Driver Assistance (IDA) systems must be able
to accurately predict the future state of traffic in order to
successfully improve the driving behavior of the ego driver
in real-time. Although modeling the current state of traffic
is trivial, in order to model and predict the future state of
traffic, the system must be capable of learning the multitude
of interactions and connections between the various elements
of the current traffic state.

Despite the complexity of these calculations, humans are
capable of relatively high success in this area. Human drivers
create models of other drivers’ behavior and base their
decisions off of these models. Take, for example, a driver
trying to merge onto a highway onramp. The driver must
look at the lane they are trying to merge into, record the
current (and constantly changing) state of traffic in that lane
and quickly create models of the future behavior of each
vehicle in that lane; based off these models, they must then
determine the best time to execute their lane change in order
to minimize the risk of collision. This involves complex
calculations of the probabilities that other drivers will slow
down or speed up in order to let the driver merge in front
of or behind them. All of the calculations are done almost
instantaneously, and allow for the efficient flow of traffic. In
order for IDA to be successful and helpful, the system must
be able to accurately model and predict the behavior of the
surrounding vehicles and give the driver information in real
time that will help them make the best driving decisions,
e.g. notifying the driver of which vehicle in the neighboring
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lane has the highest chance of yielding to allow the driver
to merge in front of them.

Many approaches have been taken to predict the behavior
of the surrounding vehicles, whether it be with the goal
of fully autonomous driving or driver assistance. Recently,
there has been much success using recurrent neural networks
(RNNs) to predict driver behavior [14]. RNNs have been suc-
cessfully utilized in many different areas, from recognition
tasks such as reading handwriting to generation tasks such as
generating novel music and predicting the output of computer
programs [5], [7], [9], [15]. In particular, long short-term
memory (LSTM) neural networks, a variant of RNNs, have
achieved success with a wide range of applications involving
sequential data, such as music generation. LSTM neural
networks consist of “memory cells” that are capable of
keeping track of past inputs and learn to remember past
information that is integral to making accurate predictions
[6].

This paper compares the performance of LSTM neural
networks that make acceleration predictions based off of
varying complexities of state information, and evaluates the
accuracy of future states generated from these predictions
and determines how realistic the behavior generated from
the networks is. The goal of this research is to determine
which state information is necessary to allow for the best
informed decisions by IDA systems.

II. REVIEW OF TWO VEHICLE CAR-FOLLOWING
MODELS

The question of modeling vehicle behavior has been ap-
proached from many angles. The accuracy of each proposed
solution depends on the quality of the traffic-flow model
at its core. The two critical components of any vehicle
behavior model are the car-following model (the vehicle’s
acceleration behavior) and the lane-changing model (the
vehicle’s lane changing decisions) [13]. In our work, our
primary contribution is in augmenting and improving the car-
following model.

In IDA systems, not only is modeling car-following impor-
tant to notify the driver of potentially dangerous situations
(collisions with the vehicle directly in front of or behind
the driver), but also modeling the acceleration behavior of
neighboring vehicles can help to notify the driver of when
is the most optimal time to execute a lane switch and more
importantly, when a dangerous situation is probable. There
are trade-offs for each type of model. However this research
proceeds with a neural driving model for reasons explained



later. The following is a brief overview of other types of
vehicle behavior models, their strengths, and weaknesses.

A. Traditional Fixed-Form Models

Much attention has been paid to the interaction of two
vehicles in a single lane (the ego vehicle and the preceding,
or leader vehicle) on the microscopic level of traffic simu-
lation. Intuitively, the behavior of the ego vehicle is related
to that of the preceding vehicle, and responds to changes in
the leader’s behavior in order to avoid collision and drive
optimally.

Fixed-form car following models can be classified five
different groups:

• The Gazis-Hermann-Rothery (GHR) model, formulated
in the early sixties, is as follows:

an(t) = cvmn (t)
∆v(t− T )

∆xl(t− T )
(1)

where an is the acceleration of vehicle n at time t, v is
the speed of vehicle n, x and v are the relative headway
distance and speed respectively between vehicle n and
vehicle n−1 (vehicle immediately preceding vehicle n),
and T is the driver reaction time. l, and m are constants.
This model originated from the initial intuition that a
driver’s acceleration is proportional to the relative speed
difference between the driver and the preceding vehicle.
However, through repeated experimentation the GHR
model has been found not to be robust because of its
simplicity and thus has been all but abandoned [18].

• Collision Avoidance (CA) models attempt to define a
“safe following distance”, which is the distance within
which unpredictable behavior by the preceding vehicle
would result in an unavoidable collision. The original
formulation of this model is as follows:

∆x(t−T ) = av2n−1(t−T )+β1v
2
n(t)+βvn(t)+b0 (2)

however, changes that consider braking preferences of
the driver have been made to the model, and it continues
to be developed.

• Linear models, generally attributed to Helly [19], in-
clude terms that take into account braking of the pre-
ceding vehicle and the vehicle two in front of the ego
vehicle:

an(t) = C1∆v(t− T ) + C2{∆x(t− T )−Dn(t)} (3)
Dn(t) = α+ βv(t− T ) + γan(t− T ) (4)

where D(t) is the desired following distance, and α, β,
γ, C1, and C2 are calibration constants. Linear models
tend to perform well at low accelerations, however pro-
duce significant errors when acceleration values begin
to fluctuate greatly.

• Psychophysical models are based off the assumption
that drivers will react once various thresholds are met.
These are defined as a threshold based on relative speed,
a threshold based on headway distance between the ego
vehicle and the preceding vehicle (the “action point”),

and a threshold defined after experiments in which par-
ticipants were required to decide whether car-following
gaps were growing or shrinking [13]. These models are
difficult to calibrate because of their dependence on
observations of individual drivers’ perception, and are
thus limited.

• Fuzzy logic-based models describe how well certain
variables fit the description of selected terms. These
models divide the variables into “fuzzy sets”, whose
membership is determined by how well the variable
fits into a given set; these sets can then be combined
with logical operators to create rule-based car-following
behavior. Fuzzy set rules are typically defined in natural
language, and they typically encounter difficulties with
defining membership functions.

B. Deterministic Car-Following Models

• The Optimal Velocity Model (OVM), proposed by
Newell and extended by Bando et al., is collision-free
because of its dependence on velocity and headway
distance [21], [22]:

an(t) =
1

τ
(V (∆xn(t)− vn(t)) (5)

where τ is the velocity relaxation time, ∆xn is the head-
way distance, and V (∆xn(t)) is an optimal velocity
function. Although the model is collision-free, because
of its simplistic nature it results in unrealistically high
maximum deceleration values in order to avoid colli-
sions.

• The Intelligent Driver Model (IDM) was proposed as
a way to deal with the problems encountered by the
Optimal Velocity models. It relies on eight model pa-
rameters, each of which are easily interpretable and
empirically measurable [20]. The IDM states that the
vehicle will accelerate at time t according to [12]:

an(t) = amax[1− (
vn(t)

v0
)δ − (

s∗(t)

sn(t)
)2] (6)

where sn is the actual headway distance of the nth
vehicle, s∗ is the minimum desired headway distance,
v0 is the vehicle desired velocity, amax is the vehicle
maximum acceleration, and δ is the acceleration expo-
nent. Like the OVM, the IDM is collision-free. However
unlike the OVM, it also accounts for vehicle behavior in
the free-flow traffic scenario and only produces realistic
acceleration values.

III. REVIEW OF NEURAL DRIVING MODELS

Various neural network models have been created to
predict vehicle trajectories. The main two categories that
have had success are convolutional neural networks that
take as input video driving data [24] and LSTM neural
networks [14], [23], [25]. For the sake of this article, we will
briefly discuss some recent work in LSTM neural networks
for predicting vehicle trajectories. In both [23] and [25], a
coordinate system is used to predict future trajectory data.
Although they achieve relative success (the implemented



LSTM neural networks are particularly good at predicting
future positions and velocities based on these inputs), using
a coordinate system has its shortcomings, particularly in
translating these systems to “real world” systems in which a
global coordinate system cannot be defined in real-time. We
avoid these issues by using absolute velocity and acceleration
of the ego vehicle, as well as relative distances and veloc-
ities between the ego and neighboring vehicles (that could
conceivably be gathered in real-time), and do not explicitly
define a grid system as in [25].

In [14], an LSTM is implemented that takes as input
values that are similar to the parameters of the car-following
models described early: headway distance, relative speed
difference between the leader and ego vehicle, ego vehicle
speed, and ego vehicle acceleration. The deep learning model
is able to remember past states and accurately predict future
accelerations based off of memory and current input. In this
research, we start with a similar model to that in [14] as a
baseline.

IV. PROBLEM STATEMENT

Our goal is to predict vehicle one-dimensional trajectories
given observed vehicle traffic data. From these predicted
trajectories, an IDA system can help inform drivers of
other vehicles’ behavior in order for drivers to make more
informed decisions while driving. Networks produce distri-
butions of future timestep acceleration values, from which
sample acceleration values are drawn in order to propagate
future trajectories.

V. METHODOLOGY

A. Dataset

In this work, we use the Next Generation Simulation
(NGSIM) dataset [16], which contains detailed vehicle tra-
jectory data collected by synchronized digital video cameras
on the eastbound I-80 in Emeryville, California in three 15
minute periods in the afternoon. The area of the highway
recorded is 500 meters in length and consists of six freeway
lanes, including a high-occupancy lane and an onramp. We
use the NGSIM I-80 reconstructed dataset from 4:00 p.m. to
4:15 p.m., because it corrects a multitude of errors that exist
in the original dataset, particularly inconsistent distributions
of acceleration, maximum speed, and minimum inter-vehicle
spacing. Trajectories are smoothed to realistic curves that
better mimic reality [2]-[4]. Precise location, velocity, and
acceleration data for more than 2000 unique vehicles is
recorded at 10 Hz.

B. Data preparation

Since the aim of this research is to predict vehicle behavior
based on the surrounding vehicles, we first defined the eight
neighboring vehicles, detailed in Fig. 1. Neighboring vehicles
are defined as follows: leader vehicle is the vehicle directly
ahead of the ego vehicle; follower vehicle is the vehicle
directly behind the ego vehicle; left and right vehicles are the
two vehicles closest to the ego vehicle in the lane directly
left and right of the ego vehicle, respectively; front-left and

front-right vehicles are the vehicles directly ahead of the left
and right vehicles, respectively; and back-left and back-right
vehicles are the vehicles directly behind the left and right
vehicles, respectively. All neighboring vehicles are at most
200 feet away from the ego vehicle. If a given neighboring
slot is not occupied, its input features are represented as 0
in the tensor input to the networks.

Inputs to the networks were discretized into 12-second
segments (each of which consists of 120 timesteps), belong-
ing to a single ego vehicle. Throughout each 12-second seg-
ment, it is possible that the IDs of the neighboring vehicles
change (due to a lane change or acceleration/deceleration that
causes a given vehicle to no longer be within range of the ego
vehicle), and this is taken into account in the pre-processing
step.

Fig. 1. Neighboring vehicles and lanes surrounding the ego vehicle. Traffic
is flowing from left to right.

C. Cross-validation

Ten-fold cross-validation was performed by randomly
dividing the reconstructed dataset into ten partitions, each
of which was held out as a validation set once while the
other nine were used as training sets. The results of each
performance metric were then averaged together to report
the overall performance of each of the three models. This
resulted in a less biased estimation of the success of each
model, and allowed us to assess how the models generalize
to unseen data.

D. Experiments

All models were trained and evaluated on their ability
to predict acceleration distributions and produce realistic
trajectories. For each of the models, the first 2 seconds
of input data of each 12-second trajectory were used to
initialize the internal state of the LSTM network. Following
learning, the learned models were used to produce simulated
trajectories as follows: first, for each 12-second trajectory, the
initial 2 seconds of true data were supplied to the network,
then the network output distributions for each timestep for
the remaining 10 seconds of the trajectory based off the
initial 2 seconds of input. At each timestep, 50 samples were
taken from the resulting acceleration distribution, and the
input state for the next timestep was determined based off
of the following equations:

v(t+ ∆t) = v(t) + a(t+ ∆t)∆t

s(t+ ∆t) = v(t) + s(t+ ∆t)∆t
(7)



Fig. 2. Network structures from input to output. Ego vehicle appears in black, while respective relevant neighboring vehicles appear in grey.

where s, v, and a are the position, velocity, and acceleration,
respectively, of a given vehicle.

This resulted in 50 simulated trajectories for each real
trajectory input into the network, on which analysis was
performed as described later.

VI. MODELS

Three LSTM neural network models were implemented.
All three models take traffic state information as input and
must learn a hidden state representation in order to produce
distributions over vehicle accelerations over the next time-
step. They each output a Gaussian mixture that models a
distribution of future acceleration values, based off of a
mixture density network as follows:

p(x) =

n∑
i=1

wi,N (x | µi, σ2
i ) (8)

where wi, µi, and σi are the weight, mean, and standard
deviation for the ith mixture component. Gaussian mixture
models have been shown to have success learning multi-
valued mappings from a set of example data [1], [16].
Networks were implemented in Torch7 [8] and were based on
Karpathys char-rnn package [5] and a similar LSTM network
implemented in [14].

A. LSTM Basic

The first model (LSTM Basic, Fig. 2(a)) was used as a
baseline. It took as input current time-step state information
about the ego vehicle and the vehicle directly in front of the
ego vehicle (leader vehicle). The state information for the
current timestep t is the following:

x(t) = 〈v(t), a(t), dl(t), rl(t)〉 (9)

where v(t) is the ego velocity at time t, a(t) is the ego
acceleration at time t, dl(t) is the headway distance between

the ego vehicle and the leader vehicle at time t, and rl(t) is
the relative speed difference between the ego and the leader
vehicle at time t.

B. LSTM Follower

The second model (LSTM Follower, Fig. 2(b)) adds in-
formation about the vehicle directly behind the ego vehicle
(follower vehicle) to the state information used in LSTM
Basic. The state information for the current timestep t is the
following:

x(t) = 〈v(t), a(t), dl(t), rl(t), df (t), rf (t)〉 (10)

where the first four elements of the current state are the same
as in LSTM Basic, df (t) is the distance headway between the
ego vehicle and the follower vehicle at time t, and rf (t) is the
relative speed difference between the ego and the follower
vehicle at time t.

C. LSTM Neighbors

The final model (LSTM Neighbors, Fig. 2(c)) defines a
group of “neighboring” vehicles that surround the ego vehicle
(see diagram) and adds information about the neighboring
vehicles to the state information in LSTM Follower. The state
for the current timestep t includes the elements of the LSTM
Follower state information, combined with distance headway
and relative speed difference information for each of the 6
defined neighboring vehicles, i.e. information for the front-
left, left, back-left, front-right, right, and back-right vehicles.
This amounts to an input state of 18 elements:

x(t) =〈v(t), a(t), dl(t), rl(t), df (t), rf (t)

dfl(t), rfl(t) dleft(t), rleft(t) dbl(t), rbl(t)

dfr(t), rfr(t) dr(t), rr(t) dbr(t), rbr(t)〉
(11)



D. Hyperparameter details

The models were trained with a learning rate of 4 x 10−3,
which decayed at a rate of 0.97 starting after the third epoch
of training. LSTM layers had 128 neurons, and models were
trained for 10 epochs or until learning stabilized.

Overfitting to the training data is a common problem in
deep neural networks, due to units co-adapting and devel-
oping interdependencies. Because of this, a dropout rate of
0.25 was utilized, meaning that 25% of units were turned
on during training. Dropout effectively counters the problem
of overfitting by randomly dropping neural units and their
connections during training. This technique has been shown
to improve network performance in tasks ranging from
speech recognition and document classification to vision and
computational biology [10].

Fig. 3. Root mean squared error for predictions in the first 5 seconds of
prediction horizons for each model. Error bars indicate standard error across
10 folds. LSTM Basic and LSTM Neighbors outperform LSTM Follower
in acceleration and velocity predictions.

Fig. 4. Root mean squared error of velocity predictions over different
prediction horizons. Error bars indicate standard error across 10 folds.

Fig. 5. Root mean squared error of acceleration predictions over different
prediction horizons. Error bars indicate standard error across 10 folds.

Fig. 6. Frequency of negative state value predictions for distance headway
and speed, indicating unrealistic trajectories. Error bars indicate standard
error across 10 folds. Negative headway distance corresponds to a collision,
while negative speed corresponds to driving in reverse.

VII. RESULTS

Several metrics were utilized to evaluate the networks’
success. Root Mean Squared Error was used to evaluate
prediction accuracy, while presence of negative speed and
headway distance state values were used to evaluate how
realistic simulated trajectories were.

A. Root Mean Squared Error

Networks were initially evaluated by computing the Root
Mean Squared Error (RMSE) between each sample ac-
celeration trajectory drawn from the network’s predicted
acceleration distribution and the true acceleration values for
each given trajectory:

RMSE =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(v
(i)
H − v̂

(i,j)
H )2 (12)



Fig. 7. Sample simulated trajectories produced by each LSTM network, compared to the true trajectories. Each graph depicts an individual 10 second
trajectory for an individual ego vehicle.

where m is the number of true trajectories, n = 50 is the
number of simulated trajectories per true trajectory, v(i)H is
the true value in the ith trajectory at time horizon H , and
v̂
(i,j)
H is the simulated value for sample j in the ith trajectory

at time horizon H . LSTM Basic and LSTM Neighbors had
nearly identical RMSE evaluated across 10 second prediction
horizons (see Fig. 3 for RMSE of acceleration and velocity
for the first 5 seconds of predictions for all three models). As
can be seen in Fig. 4 and Fig. 5, LSTM Basic and LSTM
Neighbors outperform LSTM Follower when evaluated at
prediction horizons 1 through 5. This is interesting, because
LSTM Follower’s input state contains all 4 input variables
that LSTM Basic does, however perhaps the addition of
follower vehicle information without neighboring vehicle
context causes a decline in prediction accuracy.

B. Negative State Values

Furthermore, simulated trajectories were evaluated on how
“realistic” they were. The frequencies of negative speed and
headway distance values predicted were used as a metric
for this realism. Since traffic data was recorded on the I80

freeway, negative speed values are impossible as they signify
vehicles traveling in reverse (because simulated trajectories
are propagated from acceleration distributions, it is possible
that negative speeds are produced however they should be
minimized). Similarly, negative headway distances signify
a collision, which is also undesirable trajectory behavior.
Interestingly, as can be seen in Fig. 6, both LSTM Follower
and LSTM Neighbors outperform LSTM Basic in frequency
of negative headway distance, however they predict higher
frequencies of negative speed.

C. Analysis of Network Behavior

As can be seen in Fig. 7(a), all three networks do poorly
at predicting trajectories that include long periods of accel-
eration values that are 0 m/s2 or very close to 0 m/s2. The
reason for this is that these types of trajectories are extremely
rare in the training data. Out of nearly 8000 real 10-second
trajectories from the overall dataset, only 3 percent of them
contain a stretch of 3 seconds or longer during which the ego
vehicle remains at an acceleration of 0 m/s2 (we defined any
acceleration value between -0.005 m/s2 and -0.005 m/s2 as



an acceleration value of 0 m/s2). Evidently, because of the
scarcity of the specific types of examples to learn from in the
training data, all three networks struggle to make acceleration
predictions that accurately reflect true trajectories containing
long periods of acceleration values of 0 m/s2. It seems that
the networks begin to predict extreme acceleration values
following long periods of neutral acceleration. Perhaps this
is because the networks learned patterns that after multiple
timesteps of neutral acceleration values, the driver is likely
to either speed up or in the case of the trajectory in Fig. 7(a),
slow down rapidly in order to avoid a crash.

Fig. 7(b) and 7(c) depict relatively accurate predictions
by all three networks. Interestingly, trajectories generated
by LSTM Followers tend to produce extreme acceleration
values, especially in the negative direction, as can be seen in
Fig. 7(d). LSTM Basic seems to produce realistic trajectories,
however at certain points it seems to lose context and predict
randomly, as seen in the later prediction horizons in Fig. 7(b).
LSTM Neighbors, on the other hand, generates trajectories
that seem to follow the true trajectories more reliably and
rarely produces extreme acceleration values.

VIII. CONCLUSIONS
In this article, we proposed three different LSTM networks

and compared their ability to produce accurate acceleration
distributions and propagate realistic simulated vehicle tra-
jectories. We found that LSTM Neighbors performed best
overall, followed by LSTM Basic and then LSTM Follow-
ers, showing that LSTM networks are capable of complex
prediction and simulation in one dimension. This work can
be extended to include predictions in two dimensions by
predicting lane changing behavior of vehicles using the same
NGSIM dataset. Our experiments showed that information
required by IDA systems can be provided by reasonably
accurate predictions from LSTM networks.

Looking toward real-world implementations and use cases,
we see that the proposed models will be able to perform well
by collecting input data in real-time: all input values neces-
sary for these predictions would be readily available to the
ego vehicle (absolute speed, acceleration) or easily gathered
from Radar or Lidar readings (distance and relative speed
and acceleration differences between ego and neighboring
vehicles). Most importantly, these predictions will be able
to be utilized in order to help ensure higher safety for the
driver.
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