
Transforming Floating-Point Algorithms

to Fixed-Point Implementations

Design Automation for Low-Power Embedded

Hardware and Software Design of Digital Signal

Processing Algorithms

Kyungtae Han
Brian L. Evans

August 2009

2

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 5

1.3 Outline . 6

2 Word Length Optimization 7

2.1 Fixed-Point Data Format 7

2.2 Related Work . 8

2.3 Optimum Word Length 11

2.3.1 Formulation of Optimum Word Length 11

2.3.2 Finding Optimum Word Length 12

2.4 Simulation-Based Search Methods 12

2.4.1 Complete Search 13

2.4.2 Exhaustive Search 14

2.4.3 Sequential Search 16

2.4.4 Preplanned Search 18

2.4.5 Case Study . 20

2.4.6 Comparison . 23

2.5 Genetic Algorithms . 25

2.5.1 Multi-Objective Evolutionary Optimization . . 27

2.5.2 Pareto Rank . 28

ii CONTENTS

2.5.3 Word Length Optimization with Multi-Objective
Evolutionary Algorithms 29

2.6 Summary . 30

3 Word Length Optimization for Hardware Implementa-
tion 33
3.1 Introduction . 33
3.2 Sensitivity Measurements 34

3.2.1 Complexity Measure (CM) 34
3.2.2 Distortion Measure (DM) 35
3.2.3 Complexity-and-Distortion Measure (CDM) . . 36

3.3 Case Study . 37
3.3.1 Orthogonal Frequency Division Multiplexing De-

modulator Design 37
3.3.2 Infinite Impulse Response Filter 39

3.4 Results of Sensitivity Measurements 41
3.4.1 Number of Iterations 43
3.4.2 Hardware Complexity 44
3.4.3 Discussion . 46

3.5 Results of Genetic and Evolutionary Algorithms 47
3.6 Comparison . 50
3.7 Summary . 54

4 Word Length Reduction for Lowering Power Consump-
tion 57
4.1 Introduction . 57
4.2 Word Length Reduction 58
4.3 Power Consumption 60

4.3.1 Power Analysis 60
4.3.2 Software Power Minimization 61
4.3.3 Minimizing Word Length for Low Power 61
4.3.4 Power Reduction via Word Length Reduction . 62

CONTENTS iii

4.4 Expectation of Switching 63
4.4.1 L-Bit Input . 63
4.4.2 N -Bit Truncated Data in L-Bit Input 65
4.4.3 Signed Right Shift 65

4.5 Multiplier . 68
4.5.1 Wallace Multiplier 68
4.5.2 Radix-4 Modified Booth Multiplier 69

4.6 Simulation Results . 70
4.7 Summary . 74

5 Automating Transformation to Fixed Point in Soft-
ware 75
5.1 Introduction . 75
5.2 Related Work . 76

5.2.1 Fixed-Point Simulation Environment 76
5.2.2 Word Length Optimization 77

5.3 Automating Transformation from Floating Point to Fixed
Point . 78
5.3.1 Code Generation 79
5.3.2 Range Estimation 81
5.3.3 Optimum Word Length Search 81

5.4 Case Study . 82
5.5 Summary . 88

6 Summary and Future Work 89
6.1 Summary . 89
6.2 Future Work . 92

6.2.1 Advanced Word Length Search Algorithms . . . 92
6.2.2 Further Analysis on Search Algorithms 93
6.2.3 Low Power Consumption 94
6.2.4 Electronic Design Automation Software 95
6.2.5 Optimum DSP Algorithms 97

iv CONTENTS

6.2.6 Area Model . 97

A Acronyms 99

B Notation 101

Bibliography 103

Index 117

List of Tables

1.1 Research on floating-point to fixed-point transformation 3

2.1 Fixed-point conversion approaches for integer word length
(IWL) and for fractional word length (FWL) determi-
nation. 9

2.2 Optimum word length search methods 10
2.3 Sequence of the sequential search for CDMA demodulator 24
2.4 Comparison of complete, exhaustive, sequential, and

preplanned search . 26
2.5 Advantages/disadvantages of word length search algo-

rithms in this chapter 31

3.1 Simulation results of several search methods 40
3.2 Simulation results in IIR filter of several search methods 42
3.3 Simulation results in noise cancellation with Wiener filter 46

4.1 Expectation of switching in L bit input 67
4.2 Radix-4 Booth’s recoding 71

6.1 Advantages/disadvantages of word length search algo-
rithms . 90

B.1 Notation used in this book 102

vi LIST OF TABLES

List of Figures

2.1 The possible word length combinations from searching
the entire space in a complete search 13

2.2 The direction of exhaustive search 15

2.3 The direction of the sequential search 17

2.4 The direction of the preplanned search 20

2.5 Analog and digital demodulators in CDMA receiver and
performance measurement position. 21

2.6 A digital demodulator block. 21

2.7 Result of the independent one-variable simulations on
a CDMA demodulator. 23

2.8 Genetic and evolutionary algorithms 27

2.9 Pareto front in two objectives 29

3.1 Word length model for a fixed-broadband wireless ac-
cess demodulator. 38

3.2 Word length effect for the demodulator 40

3.3 First-order direct form-II IIR filter. 41

3.4 Pole/zero plot for the IIR filter 42

3.5 Number of iterations for optimum word length with
various search algorithms in OFDM demodulator word
length design. 44

viii LIST OF FIGURES

3.6 Number of iterations for optimum word length in IIR
filter with various search algorithms. 45

3.7 Results of multiple objective genetic and evolutionary
algorithms in the IIR filter case study with seven word
length variables . 48

3.8 Result of multiple objective genetic and evolutionary
algorithms in the IIR filter case study with three word
length variables . 51

3.9 Overlap genetic evolutionary algorithm results in 50th
generation with gradient-based search results for the
IIR filter case study with seven word length variables . 52

3.10 Overlap genetic evolutionary algorithm results in 500th
generation with gradient-based search results for the
IIR filter case study with seven word length variables . 53

3.11 Result of random search algorithm in the IIR filter
study with seven word length variables 54

4.1 Example of 8-bit data word length reduction 59

4.2 Bit operation in effective bits, M . S is a signed bit . . 64

4.3 Expectation of number of switching bits in inputs . . . 68

4.4 Dadda dot diagram for a 4-bit Wallace multiplier . . . 69

4.5 A Radix-4 multiplier based on Booth’s recoding 70

4.6 Dynamic power consumption in 16-bit × 16-bit Wallace
multiplier (1MHz) . 72

4.7 Dynamic power consumption in 16-bit × 16-bit Radix-4
modified Booth multiplier (1MHz) 73

5.1 Three phases in automating transformation from float-
ing point to fixed point 78

5.2 Conversion to fixed point by a code generator 79

5.3 Automated transformation environment 80

5.4 Example of MAC floating-point program 83

LIST OF FIGURES ix

5.5 Automatically converted fixed-point code for MAC . . 84
5.6 Generated MAC cost function 85
5.7 Generated MAC objective function 86
5.8 Generated MAC top file 87
5.9 Main batch file for code generation 88

x LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Digital signal processing algorithms are typically simulated in floating-
point environments for refinement and validation. After validation, the
algorithms can be implemented in floating-point hardware or trans-
formed to run on fixed-point hardware. Implementation on floating-
point hardware offers the direct use of floating-point programs without
conversion. However, when compared to implementation on floating-
point hardware, implementation on fixed-point hardware offers lower
economic cost, lower power consumption, and faster speed, but with
a tradeoff in signal quality. In addition, off-line transformation from
floating-point programs to fixed-point programs must be performed.

Fixed-point transformation requires data-type conversion from float-
ing point to fixed point. A fixed-point data type represents a limited
range of data compared to that of a floating-point data type. Dur-
ing fixed-point transformation, proper ranges to prevent overflow and
underflow at each variable are estimated. Based on range-estimation
information, the fixed-point data can be modified to reduce hardware

2 Introduction

complexity or power consumption. Modification can be either manual
by trial-and-error or automated by computer methods.

Floating-point to fixed-point transformation, including data-type
conversion and word length optimization, which is mostly word length
reduction, is time-consuming and can sometimes account for up to
50% of the total design effort [1]. Hence, many studies have been
performed on fixed-point transformation methods, as shown in Table
1.1.

Many fixed-point environments have been developed to simulate
fixed-point signal processing systems. Fixed-point simulation environ-
ments support fixed-point arithmetic and range estimation by analyti-
cal and/or statistical approaches [1–4]. Analytical estimation extracts
data flow in a system and calculates the data ranges. Analytical es-
timation often produces conservative results. Statistical approaches ,
which monitor data ranges in variables through simulation, need much
longer running times to collect signal statistics by simulation.

Word length optimization methods that determine bit widths of
fixed-point variables with tradeoffs in signal quality and hardware
complexity have been developed based on word length search meth-
ods [2, 10–13, 15]. Sung and Kum use a statistical approach for range
estimation with the Signal Processing Worksystem (SPW) [5] for
fixed-point simulation [2]. Fixed-point simulation environments for
C++ have been developed in [3]. This environment provides range
estimation class (fSig) and fixed-point data type and arithmetic class
(gFix). Kum et al. [4] developed a program for converting a floating-
point C program to an integer C program with scaling optimization
(AUTOSCALER) that minimizes the number of shifts in scaling oper-
ations. Keding et al. [1] proposed a fixed-point conversion tool using
annotation and interpolation techniques that are employed in a com-
mercial tool, CoCentric Fixed-point Designer [17]. Nayak et al. [9]
implemented a forward and backward propagation algorithm that is
used for the MATCH project [6] for analytical range estimation.

1.1 Motivation 3

Table 1.1: Research on floating-point to fixed-point transformation.
(A: Analytical, S: Statistical, -: Not available, C: Cost, S: Shift, E:
Error, SPW HDS: Signal Processing Worksystem Hardware Design
System [5], FRIDGE: Fixed-point Programming Design Environment,
MATCH: Matlab Compiler for Heterogeneous Computing Systems [6],
MILP: Mixed Integer Linear Programming, CDM: Complexity-and-
Distortion Measure)
Paper Fixed-point Word length

Conversion Optimization
Range Environment Error Search Search
Est. Est. Method Obj.

Sung [2] S SPW HDS S Min+a C
Kim [3] S fSig/gFix - - -
Kum [4] S Autoscaler - - S
Keding [1] A FRIDGE - - -
Cmar [7] A/S - S - -
Yama. [8] - - A/S - -
Nayak [9] A MATCH - - -
Han [10] - - S Seq./Preplan E
Cantin [11] - - S Max - 1 C
Const. [12] - - A MILP/Heur. -
Shi [13] - - A/S Mosek [14] C
Han [15,16] - - S Seq./CDM E/C
Proposed S MATLAB S Genetic E/C

4 Introduction

Signal quality in systems according to word length is estimated
by analytical or statistical approaches. Analytical approaches, which
model and calculate propagated errors through fixed-point data types,
could find solutions faster than statistical approaches for simple sys-
tems. However, modeling propagated errors in a closed form is some-
times difficult in complex systems. Statistical approaches measure
propagated errors by simulation. Statistical approaches can be used
for any system, but require long running times to measure errors.

Any consideration of all states of all possible word length combina-
tions is generally impractical except for trivial systems. Word length
optimization problems can be solved by optimization algorithms with
search methods. Since statistical approaches require a long simulation
time, accelerating the running time is one of the research topics in
word length optimization.

Sung and Kum [2] proposed the word length search algorithm that
first determined the minimum bound of the word length and then tried
to determine the cost-optimal solution. Han et al. [10] proposed the
sequential search algorithm utilizing error information based on the
search algorithm from [2]. Cantin et al. [11] proposed the Max-1 al-
gorithm, which starts with the maximum word length. In addition,
Cantin et al. [11] provide a useful survey of search algorithms for word
length determination, and compare word length search algorithms.
Constantinides et al. [12] and Shi [13] employed mixed integer lin-
ear programming (MILP) and Mosek [14], respectively, to solve word
length optimization problems. In [15,16], sequential search algorithms
utilizing error and cost information were proposed.

This book, which focuses mainly on word length search algorithms
in fixed-point transformations, explains the fast search algorithm uti-
lizing gradient information. Genetic and evolutionary algorithms are
employed to search a Pareto optimal set in multiple-objective word
length optimization.

The book also shows how to reduce power consumption with opti-

1.2 Scope 5

mized word length for hardware multipliers. Finally, the book presents
a fully automated floating-point to fixed-point transformation environ-
ment supporting the search algorithms.

1.2 Scope

The works presented in this book are focused on a fixed-point transfor-
mation framework. The primary scope of this book are the following:

• Word length optimization algorithms with search methods for
multiple objectives as well as a single objective including fast
search algorithms for a single objective utilizing gradient infor-
mation to find data word length and genetic evolutionary search
algorithms for multiple objectives to optimize the signal quality
vs. implementation complexity tradeoffs.

• Low-power signal processing methods for the embedded hard-
ware and software with word length reduction techniques to
reduce power consumption, and mathematical derivation of an
expected value of switching activity in word length reduction
techniques. The reduction in dynamic power consumption on
FPGAs is estimated.

• An automated floating-point to fixed-point transformation en-
vironment software including a code generator and word length
searchers. This software can automatically transform any floating-
point program of digital signal processing to a fixed-point pro-
gram. The software for this automatic transformation is avail-
able at

http://www.ece.utexas.edu/˜bevans/projects/wordlength/

6 Introduction

1.3 Outline

Chapter 2 gives an overview of word length optimization and pro-
vides a mathematical definition of optimum word length. The chapter
presents simulation-based search algorithms and genetic and evolu-
tionary algorithms and uses a case study to illustrate how to search
word lengths.

The word length search algorithms utilizing gradient information
are presented in Chapter 3 with some design examples including an
Orthogonal Frequency Division Multiplexing (OFDM) demodulator
design and an Infinite Impulse Response (IIR) filter design. Case
studies providing performance results of the algorithms are discussed
in terms of running time and hardware complexity. The results of
multi-objective genetic and evolutionary algorithms are compared.

Shorter word lengths in data can reduce power consumption in dig-
ital signal processing systems even though the hardware architecture
is fixed. Chapter 4 presents two proposed methods for reducing power
consumption by decreasing switching activity and derives mathemat-
ically the expected switching values at inputs. Chapter 4 also demon-
strates and compares dynamic power reduction in FPGAs employing
the methods.

Chapter 5 describes a proposed environment for a completely au-
tomating floating-point to fixed-point transformation. The word length
optimization structure of the environment is presented. Chapter 5 il-
lustrates the automating transformation with a case study.

Chapter 6 presents the major contributions from the research and
directions for future work.

Chapter 2

Word Length Optimization

2.1 Fixed-Point Data Format

When designers model at a high level, floating-point numbers are use-
ful for modeling arithmetic operations. Floating-point numbers can
handle a very large range of values, and they are easily scaled. In
hardware, floating-point data types are typically converted or built as
fixed-point data types to reduce the amount of hardware needed to im-
plement the functionality. To model the behavior of fixed-point arith-
metic hardware, designers need bit-accurate fixed-point data types.

Fixed-point data consists of an integer part and a fractional part.
The number of bits assigned to the integer representation is called the
integer word length (IWL), and the number of bits assigned to the
fraction is the fractional word length (FWL) [18]. Fixed-point word
length (WL) corresponds to the following equation:

WL = IWL + FWL (2.1)

The word length must be greater than 0. Given IWL and FWL, fixed-
point data represent a value in the range R with the quantization step

8 Word Length Optimization

∆ as follows:
(

−2IWL ≤ R < 2IWL for signed
0 ≤ R < 2IWL for unsigned

(2.2)

and

∆ = 2−FWL. (2.3)

IWL and FWL are determined to prevent unwanted overflow and
underflow. IWL can be determined by the following relation:

IWL ≥ ⌈log2 R⌉. (2.4)

Here, ⌈x⌉ is the smallest integer that is greater than or equal to x. The
range R can be estimated by monitoring the maximum and minimum
value or mean and the standard deviation of a signal [3,19]. FWL can
be determined by word length optimization or trade-offs in the design
parameters during fixed-point conversion.

2.2 Related Work

During the floating-point-to-fixed-point conversion process, fixed-point
word lengths composed of the IWL and the FWL are determined
by different approaches, as shown in Table 2.1. Some published ap-
proaches for floating-point-to-fixed-point conversion use an analytical
approach for range and error estimation [9, 12, 13, 20, 21], and others
use a statistical approach [3, 7, 13, 22]. An analytical approach has
a range and error model for integer word length and fractional word
length design. Some use a worst-case error model for range estima-
tion [9,20], and some use forward and backward propagation for IWL
design [21]. The advantages of analytical techniques are that they do

2.2 Related Work 9

Table 2.1: Fixed-point conversion approaches for integer word length
(IWL) and for fractional word length (FWL) determination.

(a) Analytical Approach

Range Model for IWL Error Model for FWL

Wadekar 1998 [20] Constantinides 2003 [12]

Stephenson 2000 [21] Shi 2004 [13]

Nayak 2001 [9]

(b) Statistical Approach

Range Statistic for IWL Error Statistic for FWL

Cmar 1999 [7] Cmar 1999 [7]

Kim 1998 [3] Kum 2001 [22]

Shi 2004 [13]

not require simulation stimulus and can be faster. However, they tend
to produce more conservative word length results.

Statistical approaches have been used for IWL and FWL deter-
mination. Some use range monitoring for IWL estimation [3, 7], and
some use error monitoring for FWL [7, 13, 22]. The work in [13] also
uses an error model that has coefficients obtained through simulation.
The advantage of statistical techniques is that they do not require a
range or error model. However, they often need long simulation times
and tend to be less accurate in determining word lengths.

After obtaining models or statistics of range and error by analyt-
ical or statistical approaches, respectively, search algorithms can find
an optimal word length. Some published methods search for optimal
word length without sensitivity information [2,23], whereas others do
use sensitivity information [11,23,24], as shown in Table 2.2. “Exhaus-

10 Word Length Optimization

Table 2.2: Optimum word length search methods

Cost Sensitivity Error Sensitivity Non-Sensitivity

Local [23] Sequential [24] Exhaustive [2]

Evolutive [25] Max-1 [11] Branch and Bound [23]

Preplanned [24]

Complexity-and-Distortion Measure

tive Search” [2] and “Branch-and-Bound” procedure [23] can find an
optimum word length without any sensitivity information. However,
non-sensitivity methods have an unrealistic search space as the num-
ber of word lengths increases.

Some use sensitivity information to search for an optimum word
length. The “Local Search” [23] and the “Evolutive Search” in [11] use
cost-sensitivity information. The advantage of cost-sensitivity meth-
ods is that they can find an optimum word length in terms of cost.
The “Sequential Search” and the “Preplanned Search” in [24] and
the“Max-1 Search” in [11] use error-sensitivity information. The ad-
vantage of employing error-sensitivity methods is that they find the
optimal word length in terms of error faster than cost-sensitivity meth-
ods. However, neither type of sensitivity method always reaches a
globally optimal word length.

Cantin et al. provide a useful survey of search algorithms for word
length determination. In this work, search algorithms are compared,
and the Preplanned Search shows the smallest number of iterations
to find a solution. However, the heuristic procedures do not neces-
sarily capture the optimum solution to the word length determination
problem, because of nonconvexity in the constraint space [12]. Thus,
consideration is given to the distance between a globally optimal word
length and a locally optimal word length.

2.3 Optimum Word Length 11

2.3 Optimum Word Length

2.3.1 Formulation of Optimum Word Length

The word length is an integer value, and a set of n word lengths in a
system is defined to be a word length vector, that is, w ∈ I

n such as
{w1, w2, · · · , wn}. The objective function f is defined by the sum of
every word length implementation cost function c as

f(w) =
n

∑

k=1

ck(wk) (2.5)

where ck has real value so that ck : I → R. The quantized performance
function p indicates propagated precision or quantized error and is
constrained as follows:

p(w) ≥ Preq (2.6)

where p has real value so that p : I → R and Preq is a constant
for a required performance. The lower bound word length w and
upper bound word length w are considered as constraints for each
word length variable:

wk ≤ wk ≤ wk for ∀k = 1, · · · , n (2.7)

The complete word length optimization problem can then be stated
as

{

min
w∈In

f(w)

subject to p(w) ≥ Preq,w ≤ w ≤ w
(2.8)

The goal of the word length optimization is hence to search for the
optimizer w∗ that minimizes the objective function f(w) in (2.8).

12 Word Length Optimization

2.3.2 Finding Optimum Word Length

One of the algorithms for searching the “optimum” word length starts
with an initial feasible solution w(0) and performs an update via /in-
dexfeasible solution

w(h+1) = w(h) + s ξ(h) (2.9)

Here, h is an iteration index, s is the integer step size, and ξ is an
integer update direction. A sound initial guess, a well-chosen step
size, and a well-chosen update direction can reduce the number of
iterations to find optimum word lengths.

Optimum word lengths can be found by solving equations when
the performance function p is expressed in analytical form. If there
is no analytical form to express the performance, then simulation-
based search methods can be used to search for optimum word lengths
by measuring the performance function. Typical approaches involve
assigning word length vector w(0) to a lower bound, an upper bound,
or a vector between the lower and upper bounds. Step size can be
fixed or adapted. The update direction is adapted according to the
search algorithms in Section 2.4.

During iteration, the stopping criteria are dependent on the search
algorithm. The algorithm that starts from the lower bound stops
when the performance P reaches the required performance Preq. The
algorithm that starts from the upper bound stops when P falls be-
low Preq. Other algorithms stop when the performance P or cost c
converges within a neighborhood.

2.4 Simulation-Based Search Methods

Optimum word lengths can be found by solving equations when the
performance function P is expressed in analytical form. If there is

2.4 Simulation-Based Search Methods 13

8

3

4

5

2

2w

6

7

1

32 4 5 6 7 w11

Figure 2.1: The possible word length combinations from searching the
entire space in a complete search (w = {2, 2};w = {8, 7}; trials= 42).

no analytical form to express the performance, then simulation-based
search methods can be used to search for optimum word lengths by
measuring the performance at the system output.

2.4.1 Complete Search

A complete search (CS) tests every possible combination of word
lengths between the lower bound and upper bound and measures the
performance of each combination by simulation. Then optimum word
lengths can be selected from the simulation results.

For example, assuming that the number of independent variables
to find optimum word-length is two, and the lower bound and upper
bound are {2, 2} and {8, 7}, respectively, the possible word length
combinations are shown in Fig. 2.1. The number of trial tests or
trials is 42. The optimum word length can be selected from the given
simulation results after simulation is completed.

14 Word Length Optimization

The total number of tests in N word length variables is

EN
CS =

N
∏

k=1

(wk − wk + 1). (2.10)

A complete search is guaranteed to find a global optimum point, but
computational time and the number of tests increase exponentially as
the number of word length variables increases.

2.4.2 Exhaustive Search

Sung and Kum [2] search for the first feasible solution. They search for
a word length with the minimum word length as the initial guess and
increment the word length by one until the propagated error meets
the minimum error. For example, assuming that we are trying to
find the optimum word length for two variables, the minimum word
lengths are {2, 2}, and all word length costs are similar, the search
path is shown in Fig. 2.2. An optimized point {5, 5} is given for a
comparison between search methods. The minimum number of trials
is 24.

The total number of experiments of the Exhaustive Search can be
generalized. The sum of the distance d with N dimensions is defined
as

d = dw1 + dw2 + · · · + dwN . (2.11)

where dwi is the distance between the minimum word length and the
optimum word length in the ith dimension. The expected number
of experiments of the Exhaustive Search is calculated by using the

2.4 Simulation-Based Search Methods 15

24

4

5

6

7

1

2

w

32 4 5 6 7 81 w1

2

dw

dw1

2

wopt

wb 21

22

23

3

Figure 2.2: The direction of exhaustive search (w = {2, 2} ; optimum
point = {5, 5}; distance, d, in (2.11) is 6; trials = 24).

summation of combination-with-replacement in [26] as

EN
ES(d) =

d−1
∑

r=0

CR(N, r)

= CR(N + 1, d − 1)

=

(

N + d − 1
d − 1

)

=
(N + d − 1)!

{(N + d − 1) − (d − 1)}!(d − 1)!

=
(d + N − 1) · · · (d + 2)(d + 1)d

N !
. (2.12)

The trials may be bounded as

EN
ES(d) ≤ EN,d

ES < EN
ES(d + 1). (2.13)

16 Word Length Optimization

The number of experiments is always less than that of the Complete
Search if at least two feasible solutions exist. However, the Exhaustive
Search method does not always guarantee that it will find the global
optimum.

2.4.3 Sequential Search

The basic notion of the Sequential Search is that each trial eliminates
a portion of the region being searched [24]. This procedure is also
called a “Min+1 Search” in [11] or “Local Search” in [23]. The Se-
quential Search method decides where the most promising areas are
located, and continues in the most favorable region after each set of
experiments [27]. The Sequential Search algorithm can be summarized
by the following four steps:

1. For the independent variables, select a set of values that satisfies
the desired system performance during the one-variable simula-
tions.

2. Evaluate the system performance.

3. Choose feasible locations at which system performance is evalu-
ated.

4. If the system performance of one point is better than at others,
then move to the better point, and repeat the search, until the
point has been located within the desired accuracy.

A base point is the minimum word length as an initial word length
w(0) in (2.9). In Step 3, the direction of search, ξ in (2.9) is chosen in

2.4 Simulation-Based Search Methods 17

b

4

5

6

7

1

2

w

32 4 5 6 7 81 w1

2

dw

dw1

2

wopt

w

3

Figure 2.3: The direction of the sequential search (w = {2, 2}; opti-
mum point = {5, 5}; distance d in (2.11) is 6; trials = 12)

accordance with the maximum derivative of their performance

ξj =

{1, 0, 0, · · · , 0} if mj = ∇ p

w1

{0, 1, 0, · · · , 0} if mj = ∇ p

w2

· · ·
{0, 0, 1, · · · , 0} if mj = ∇ p

wN

(2.14)

and

mj = max(∇
p

w1

,∇
p

w2

, · · · ,∇
p

wN

) (2.15)

where ∇ is the gradient operator.

In Fig.2.3, starting from the word length base point {2, 2}, there
are two directions of the sequential search in Step 3. If the perfor-
mance of {3, 2} is better than that of {2, 3}, then a new word length
vector moves into {3, 2}. Simulations are repeated until the desired
performance is obtained.

18 Word Length Optimization

The generalized equation for the trials in the sequential search with
N dimensions is

EN
SS = N · (dw1 + dw2 + · · · + dwN). (2.16)

In this example, the number of trials in (2.16) is 12, as illustrated in
Fig.2.3. The number of trials is reduced by using sensitivity informa-
tion; however, an optimum word length can be a local optima.

A local search [23] uses sensitivity information with the above pro-
cedure, but it uses cost sensitivity instead of performance sensitivity.

2.4.4 Preplanned Search

A preplanned search [24] is one in which all the experiments are com-
pletely scheduled in advance. The directions are obtained from the
sensitivity of performance of an independent variable. The optimum
point is found by employing the steepest descent among local neigh-
boring points.

The preplanned search algorithm in N dimensions is summarized
by the following steps:

1. For the independent variables, select a set of values for the inde-
pendent variables that satisfies the desired performance during
the one-variable simulations.

2. Make a performance sensitivity list from the one-variable simu-
lations.

3. Make a test schedule with the sensitivity list to follow the higher
sensitivity points from the base point.

4. Evaluate the performance at those points.

2.4 Simulation-Based Search Methods 19

5. Move to the points, until the point has been located within the
desired accuracy.

In step 3, the direction of preplanned search is chosen in accordance
with the maximum derivative of an independent performance

ξj =

{1, 0, 0, · · · , 0} if mj = ∇ p1

w1

{0, 1, 0, · · · , 0} if mj = ∇ p2

w2

· · ·
{0, 0, 1, · · · , 0} if mj = ∇ pN

wN

(2.17)

where
mj = max(∇

p1

w1

,∇
p2

w2

, · · · ,∇
pN

wN

) (2.18)

In Fig. 2.4, starting from the base point {2,2}, the preplanned
search makes a list of the directions of the steepest ascent by comparing
the gradients of the independent performances in one dimension from
the one-variable simulations. If the gradient, which is calculated from
the one-variable simulations at a w1 of 2 bits, is larger than that at
a w2 for 2 bits, then the next feasible location is {3,2}. Then, if
the gradient at a w1 of 3 is smaller than that at a w2 of 2, the next
feasible location is {3,3}. The simulation path would be {2,2}, {3,2},
{3,3}, etc. After scheduling the feasible points, the performance of
these points are evaluated until the value of the performance meets
the desired accuracy.

The generalized equation for the trials in the preplanned search
with N dimensions as

EN
PS = dw1 + dw2 + · · · + dwN . (2.19)

In this example, the number of trials in (2.19) is 6, as illustrated in
Fig. 2.4. The number of trials is the least among the search methods
reported so far. However, finding the global optimum word length is
not guaranteed.

20 Word Length Optimization

b

4

5

6

7

1

2

w

32 4 5 6 7 81 w1

2

dw

dw1

2

wopt

w

3

Figure 2.4: The direction of the preplanned search (w = {2, 2}; opti-
mum point = {5, 5}; distance d in (2.11) is 6; trials = 6)

2.4.5 Case Study

Typical demodulators are implemented with an analog block in front
of an analog-to-digital converter (ADC) block, as shown in Fig. 2.5(a).
As the speed of the ADC increases in communication systems [28], the
analog parts are replaced with digital parts. As shown in Fig. 2.5(b),
The analog demodulator is replaced with a digital demodulator.

The demodulator converts modulated signals into baseband sig-
nals. In the digital demodulator block of Fig. 2.6, the sampled data
values output by the ADC are multiplied by a carrier signal to shift the
spectrum down to the baseband. The out-of-band signal is removed
by the lowpass filter (LPF). The variables in the digital demodulator
are given below [10,29]:

• Bi: input word length

• Bc: carrier word length

2.4 Simulation-Based Search Methods 21

LPF ADC

(b) Digital Demodulator

RF
Demodulator

Rake
Receiver

Decoder
Data

Output

Carrier

LPFADCRF
Demodulator

Rake
Receiver

Carrier

(a) Analog Demodulator

Decoder
Data

Output

FEROutput
SNR

Figure 2.5: Analog and digital demodulators in CDMA receiver and
performance measurement position.

• Bm: multiplier output word length

• Bf : filter output word length

• Bfc: filter coefficient word length.

Because direct measurement of frame error rate (FER), which is
a general measurement to evaluate Code Division Multiple Access

LPFADC

Carrier

Bm

Bc

Bi Bf

Bfc

RF Rake
Receiver

Figure 2.6: A digital demodulator block.

22 Word Length Optimization

(CDMA) CDMA systems requires at least 105 frames during the sim-
ulation [30], the output SNR is used for performance measurement
instead of FER. The required output SNR in this system is over 0.8
dB, whereas FER is under 0.03 [10].

For the initial point, the minimum word length is selected by the
independent one-variable simulations in which one variable changes
while other variables maintain high precision. To satisfy the output
SNR of 0.8 dB, the minimum word length of {Bi, Bc, Bm, Bf , Bfc}
is {4, 3, 4, 5, 7}, which is acquired from the one-variable simulations
shown as Fig. 2.7. For a simplified example, the one cost-per-bit
is assumed. In the exhaustive search, the next points are searched:
{5, 3, 4, 5, 7}, {4, 4, 4, 5, 7}, {4, 3, 5, 5, 7}, {4, 3, 4, 6, 7}, {4, 3, 4, 5, 8},
{5, 4, 4, 5, 7}, etc. The search is continued until the communications
performance meets the specified desired requirement. In the sequential
search, the next point is one of the following: {5, 3, 4, 5, 7}, {4, 4, 4, 5, 7},
{4, 3, 5, 5, 7}, {4, 3, 4, 6, 7}, and {4, 3, 4, 5, 8}. The next point would
have the largest communication performance among them. From Ta-
ble 2.3, {4, 3, 4, 6, 7} is the next location because it has the largest
communication performance. The simulation moves the current point
to the new point and continues to search until the performance exceeds
the specified desired requirement, which is an output SNR of 0.8dB
in this case. The final point is {5, 3, 6, 6, 7}, as shown in Table 2.3.
From (2.11), the distance between the base and the optimum point is
4. From (2.16), the number of trials for the sequential search to find
an optimum word length is 20.

In the preplanned search, the search path is estimated from the
sensitivity of each one-variable simulation shown in Fig. 2.7. Starting
from the minimum word length or base point, {4, 3, 4, 5, 7}, the first
expected point is {4, 3, 4, 6, 7} because, from Fig. 2.7, Bf has the
greatest derivative among each word length at the base point.

The sequence of the preplanned search points is {4, 3, 4, 5, 7}, {4,
3, 4, 6, 7}, {4, 3, 4, 6, 8}, {4, 3, 5, 6, 8}, {4, 4, 5, 6, 8}, etc. Simulations

2.4 Simulation-Based Search Methods 23

2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Wordlength

O
ut

pu
tS

N
R

B
i

B
c

B
m

B
f

B
fc

Figure 2.7: Result of the independent one-variable simulations on a
CDMA demodulator.

move the current point to the next point until the performance exceeds
the specified desired requirement. From (2.11), the optimum point is
{5, 4, 5, 6, 8} and distance is 5. From (2.19), the number of trials of
the preplanned search to find an optimum word length is 5.

2.4.6 Comparison

The four search methods are compared according to the trials from
(2.10), (2.12), (2.16), and (2.19), as shown in Table 2.4. For each
method, the number of trials is calculated in addition to the one-
variable simulation, which all of the search methods use. The complete
search needs 283920 trials to find the optimum word length from (2.10)
with wk = {16, 16, 16, 16, 16} and wk = {4, 3, 4, 5, 7}, assuming that
the maximum word length is 16 bits. If the computer simulation to
calculate the frame error rate per trial in the CDMA system takes

24 Word Length Optimization

Table 2.3: Sequence of the sequential search for CDMA demodulator
(Traffic Channel Rate Set 1 in Additive White Gaussian Noise, Input
SNR = −17.3 dB, Eb/Nt= 3.8, Rate= 9600 bps, Desired performance:
Output SNR> 0.8dB, FER< 0.03)

Step {Bi, Bc, Bm, Bf , Bfc} Output SNR FER Result

1, 2 {4, 3, 4, 5, 7} 0.711 0.038 Fail

3 {5, 3, 4, 5, 7} 0.735 - -

3 {4, 4, 4, 5, 7} 0.694 - -

3 {4, 3, 5, 5, 7} 0.712 - -

3 {4, 3, 4, 6, 7} 0.759 - Max

3 {4, 3, 4, 5, 8} 0.704 - -

4 {4, 3, 4, 6, 7} 0.759 0.035 Fail

3 {5, 3, 4, 6, 7} 0.763 - -

3 {4, 4, 4, 6, 7} 0.722 - -

3 {4, 3, 5, 6, 7} 0.773 - Max

3 {4, 3, 4, 7, 7} 0.751 - -

3 {4, 3, 4, 6, 8} 0.749 - -

4 {4, 3, 5, 6, 7} 0.773 0.034 Fail
...

...
...

...
...

3 {6, 3, 5, 6, 7} 0.798 - -

3 {5, 4, 5, 6, 7} 0.802 - -

3 {5, 3, 6, 6, 7} 0.805 - Max

3 {5, 3, 5, 7, 7} 0.803 - -

3 {5, 3, 5, 6, 8} 0.798 - -

4 {5, 3, 6, 6, 7} 0.805 0.029 Pass

2.5 Genetic Algorithms 25

about 10 minutes, the complete search to find an optimum word length
would require 5 years, which is an unrealistic design time.

By using (2.12), the exhaustive search needs 56 trials, by using
(2.12), which is fewer than the complete search. The exhaustive search
is, however, inefficient in finding the optimum word length when the
word length variables for optimization are numerous and the distance
between the base and optimum point is longer.

The sequential search and preplanned search requires 20 and 5
trials, respectively, which are fewer than for the other search methods.
Among the search methods, the preplanned search has the smallest
number of experiments, but its distance according to (2.11) is greater
than that for the sequential search. By implication, therefore, the word
length of the sequential search method is closer to a global optimum
with respect to hardware cost.

Techniques based on the gradient projection method encounter a
loss of direction problem when they employ the sequential search and
preplanned search. This problem can be solved by adapting the step
size.

The sequential search and the preplanned search reduce the trials
by rates of 64% and 91%, respectively, when compared to the exhaus-
tive search for word length optimization in the CDMA demodulator
design. However, the preplanned search seldom converges to the same
optimum point, and the distance is longer than that of the other search
methods.

2.5 Genetic Algorithms

In 1975, Holland introduced an optimization procedure that mimics
the process observed in natural evolution [31] and is known as the
genetic algorithm, or GA [32–34]. This technique of optimization is
similar to its associated algorithms such as simulated annealing [35],

26 Word Length Optimization

Table 2.4: Comparison of complete, exhaustive, sequential and pre-
planned search (N = 5, wk = {16, 16, 16, 16, 16}, wk = {4, 3, 4, 5, 7},
and the term d is defined in (2.11)).

Search Distance Number of Experiments from Trials

(d) (2.10), (2.12), (2.16), (2.19)

Complete -
∏N

k=1(wk − wk + 1) 283920

Exhaustive 4 (d + 4)(d + 3) · · · (d)/5! 56

Sequential 4 5 · d 20

Preplanned 5 d 5

evolutionary strategies [36], and evolutionary programming [37, 38],
which are classified as guided random techniques. Because of its simple
implementation procedure, the GA can be used as an optimization tool
for designing AI-hybrid systems for real-world applications [39–44].

Genetic and evolutionary algorithms [34] provide optimization
techniques that mimic the three major components of natural evo-
lution and selective breeding: selection, exchange of genetic material
during reproduction (or mating), and random mutations as shown in
Fig. 2.8 [45].

By their definition, genetic algorithms lend themselves to discus-
sion in terms of a biological paradigm. For example, an instance of
a system is referred to as an individual. An individual contains a
genotypic description, which is the list of attributes (or decision vari-
ables) to be optimized. A group of individuals make up a population.
Selection is mimicked by comparing the performances of individuals
in a population and determining which individuals get to mate. An
individual with more desirable features for fitness is given a higher
probability of mating. Mating is performed by combining some at-
tributes from one parent and the remaining attributes from the other

2.5 Genetic Algorithms 27

Genes
Mating

Evaluation

Function

Selection

New Gene

Pool

Child Parental

Genes

Measure

Genes w/

Mutation

Figure 2.8: Genetic and evolutionary algorithms [45]

parent. The attributes of the resulting individual can then be mu-
tated using any method desired, including normal and uniform distri-
butions. Mutation provides a natural resistance to the optimization
process converging on a local minimum or maximum and allows the
introduction of new genetic material into the gene pool.

2.5.1 Multi-Objective Evolutionary Optimization

Most problems in nature have several objectives (normally conflicting
with each other) that need to be achieved at the same time. These
problems, called “multi-objective” optimization problems, were orig-
inally studied in the context of economics [46]. Because of the con-
flicting nature of their objectives, multi-objective optimization prob-
lems do not normally have a single solution, and, in fact, they even
require the definition of a new notion of “optimum.” The most com-

28 Word Length Optimization

monly adopted notion of optimality in multi-objective optimization is
that originally proposed by Edgeworth [47] and later generalized by
Pareto [48]. Such a notion is called Edgeworth-Pareto optimality or,
more commonly, Pareto optimality.

Definition 2.5.1 (Definition of Pareto Optimality). A vector of deci-
sion variables x∗ ∈ F is Pareto optimal if there does not exist another
x ∈ F such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k and fj(x) < fj(x
∗)

for at least one j. Here, F denotes the feasible region of the problem
(i.e., where the constraints are satisfied).

In words, this definition says that x∗ is Pareto optimal if there
exists no feasible vector of decision variables x ∈ F that would decrease
some criterion without causing a simultaneous increase in at least one
other criterion. Unfortunately, this concept almost always gives not a
single solution, but rather a set of solutions, called the Pareto optimal
set. The vectors x∗ corresponding to the solutions included in the
Pareto optimal set are called non-dominated. The plot of the objective
functions whose non-dominated vectors are in the Pareto optimal set
is called the Pareto front, as shown in Fig. 2.9.

2.5.2 Pareto Rank

A fitness value of a chromosome is required in GA operations. How-
ever, it is difficult to combine the objectives both in linear and/or
nonlinear fashion to reflect the fitness of the chromosome. Therefore,
a Pareto multi-objective ranking approach [49] is adopted. Consider

an individual xi at generation t that is dominated by p
(t)
i individuals

in the current population. Its current position in the individuals’ rank
can be given by

rank(xi, t) = 1 + p
(t)
i (2.20)

All non-dominated individuals are assigned Rank 1. Fitness is assigned
to each chromosome according to its rank in the population.

2.5 Genetic Algorithms 29

: Dominated

O
bj

ec
tiv

e
2

Objective 1

Pareto Front
: Non−Dominated

Figure 2.9: Pareto front in two objectives

2.5.3 Word Length Optimization with Multi-Objective
Evolutionary Algorithms

When implementing a digital filter in hardware, filter coefficients have
to be represented with finite word length. Several methods have been
proposed to effectively design finite impulse response (FIR) filters with
linear programming [50–52]. Xu and Daley [53] show that GA is su-
perior to integer programming techniques in filter design.

Being powerful optimization tools, the genetic and evolutionary
algorithms have explored a large number of applications [54] in sig-
nal processing, such as adaptive IIR filtering [55], nonlinear model
selection, time-delay estimation, active noise control, and speech pro-
cessing.

Genetic algorithms have been used in filter design [53,56–60]. The
initial use of a genetic algorithm for filter design was reported in [56].
Genetic algorithms have been used to design multiplierless filters [61–

30 Word Length Optimization

63] or filters represented with cannoical signed-digits (CSD) [64–67].

Genetic algorithms have been applied to word length design in
digital signal processing. Word lengths in digital signal processing
are analogous to genes, and each set of word lengths is analogous to
a chromosome. The GA is used to determine word length in filter
coefficients [60] and to optimize the word length of input data and
coefficients in a FFT processor [68] with a single objective.

Some papers have employed multiple objectives for word length op-
timization. Leban and Tasic [59] used mean square error, delay, and
area as objectives. Signal-to-noise ratio and power are used as objec-
tives by Sulaiman and Arslan [69]. These works employed a weighted
sum as a fitness function. As in the case of the weighted sums methods,
the relative importance of objectives should be specified using weights
(quantitatively). Furthermore, a simple weighted-sum technique only
finds a single solution of the many possible optimal solutions in the
objective space. Thus, the single solution does not provide the abil-
ity to understand the various trade-offs that are possible in objective
space [45].

In this book, Pareto ranking approaches [45] are used for multiple
objective evolutionary algorithms to optimize word length, and the
results are shown in Section 3.5.

2.6 Summary

This chapter briefly explains fixed-point word length optimization and
several search algorithms. Table 2.5 summarizes the advantages and
disadvantages of the algorithms mentioned in this chapter. As shown
in Table 2.5 the complete method and the genetic method have more
advantages compared to the other methods. However, the complete
search method is impractical. The sequential and the preplanned
methods show less iteration than the other methods. However, these

2.6 Summary 31

Table 2.5: Advantages/disadvantages of word length search algorithms
in this chapter

Advantages Disadvantages
1. Global optima 1. Local optima
2. Pareto ranking 2. Weights in objectives
3. Handle multi-objectives 3. Single objective
4. Amenable to parallelism 4. Limited parallelism
5. Low algorithm complexity 5. High algorithm complexity
6. Fewer iterations 6. More iterations

7. Impractical

Methods 1 2 3 4 5 6 1 2 3 4 5 6 7
Advantages Disadvantages

Complete Y Y Y Y Y Y
Exhaustive Y Y Y Y Y
Sequential Y Y Y Y Y
Preplanned Y Y Y Y Y

Genetic/weighted Y Y Y Y Y

methods cannot handle multiple objectives. The next chapter pro-
poses a modified sequential search algorithm that can handle multiple
objectives.

32 Word Length Optimization

Chapter 3

Word Length Optimization
for Hardware
Implementation

3.1 Introduction

As described in Section 2.4, there are many search algorithms used
in word length optimization. Gradient-based search algorithms utilize
gradient information of word length to find better solutions. The gra-
dient information can be obtained from sensitivity measurements of
complexity or distortion according to the word length set. This chap-
ter presents the complexity-and-distortion measurement method that
utilizes all sensitivity information simultaneously. Case studies in word
length design in OFDM demodulators and IIR filters demonstrate the
proposed algorithms. Simulation results from multi-objective genetic
algorithms are also shown and compared.

34 Word Length Optimization for Hardware Implementation

3.2 Sensitivity Measurements

The sensitivity information or gradient information used to update
directions in (2.9) can help reduce the search space dramatically. The
sensitivity information can be obtained by measuring hardware com-
plexity and distortion or propagated quantized precision loss. The
complexity measure is used for the hardware cost function in [23].
The distortion measure in [24] utilizes the sensitivity information of
a propagated quantization error. The complexity-and-distortion mea-
sure in [15] combines the two measures to update the search direction.

3.2.1 Complexity Measure (CM)

The complexity measure method considers the hardware complexity
function as the cost function in (2.5) and uses the sensitivity infor-
mation of the complexity as the direction to search for the optimum
word lengths. The local search in [23] uses the complexity measure.

The complexity measure method updates word lengths from the
direction of the lowest sensitive complexity until a system meets a re-
quired performance, such as Preq in (2.6). The complexity measure
method searches the word lengths that minimize hardware complex-
ity; however, it demands a large number of iterations since it does not
use any distortion sensitivity information that can speed up the search
for the optimum word lengths. For example, in a system composed
of adders and multipliers, the complexity sensitivity of a multiplier
is larger than that of an adder. The complexity measure method
increases the word length in the adder with the priority during an
increase procedure even if the word length in the multiplier affects
the propagated quantized performance more. It would waste com-
puter simulation time if the complexity sensitivity of an adder is much
smaller than that of a multiplier.

3.2 Sensitivity Measurements 35

3.2.2 Distortion Measure (DM)

The distortion measure method considers the distortion function as
the objective function in (2.5) and uses the sensitivity information
of the distortion for the direction to search for the optimum word
lengths. The sequential search method uses the distortion measure.
This method assumes that every cost or complexity function will be the
same or equal to 1 and selects word lengths with the update direction
according to the distortion sensitivity information.

The complexity objective function is replaced with the distortion
objective function d(w) as

fd(w) = d(w) (3.1)

and the complexity minimization problem is changed into a distortion
minimizing problem by

{

min
w∈In

fd(w)

subject to d(w) ≤ Dreq, c(w) ≤ Creq, w ≤ w ≤ w
(3.2)

where Dreq is the required distortion, and Creq is a complexity con-
stant.

The sensitivity information is also calculated by the gradient of
the distortion function. For the steepest descent direction, the update
direction is

ξDM = −∇fd(w) (3.3)

For the distortion, Fiore and Lee [70] computed an error variance, and
Han et al. [24] measured an output SNR.

The distortion measure method reduces the number of iterations
for searching the optimum word lengths, because the search direction
depends on the gradient information of the distortion. This method

36 Word Length Optimization for Hardware Implementation

rapidly finds the optimum word length satisfying the required perfor-
mance within fewer iterations than the complexity measure method.
However, the method does not guarantee the optimum word lengths
in terms of the complexity.

3.2.3 Complexity-and-Distortion Measure (CDM)

The complexity-and-distortion measure combines the complexity mea-
sure with the distortion measure by using a weighting factor. In the
objective function, both complexity and distortion are considered si-
multaneously. The complexity and the distortion function can be nor-
malized by complexity and distortion values at base word length, re-
spectively. The two objectives can be added with complexity and
distortion weighting factors, αc, and αd, respectively.

Thus, the new objective function is

fcd(w) = αc · cn(w) + αd · dn(w) (3.4)

where cn(w) and dn(w) are the normalized complexity function and
distortion function, respectively. The relation between the weighting
factors is

αc + αd = 1 (3.5)

where

0 ≤ αc ≤ 1, 0 ≤ αd ≤ 1. (3.6)

Using (3.4), the objective function gives a new optimization prob-
lem:

{

min
w∈In

fcd(w)

subject to d(w) ≤ Dreq, c(w) ≤ Creq, w ≤ w ≤ w
(3.7)

3.3 Case Study 37

where Dreq and Creq are the required distortion and a complexity con-
stant, respectively. This optimization problem is to find word lengths
that minimize complexity and distortion simultaneously according to
the weighting factors.

Setting the complexity and distortion weighting factor, αc and αd,
from 0 to 1, the complexity-and-distortion method searches for an
optimum word length with tradeoffs between the complexity mea-
sure method and distortion measure method. The complexity-and-
distortion measure becomes the complexity measure or the distortion
measure when αd = 0 or αc = 0, respectively.

The complexity-and-distortion measure method can reduce the
number of iterations for searching the optimum word lengths, because
the distortion sensitivity information is utilized. This method can
more rapidly find the optimum word length that satisfies the required
performance because it requires fewer iterations than the complexity
measure method. However, the word lengths are not guaranteed to be
optimal in terms of the complexity.

3.3 Case Study

3.3.1 Orthogonal Frequency Division Multiplex-
ing Demodulator Design

Digital communication systems have digital blocks such as demodula-
tors that need word length optimization. The searching algorithms in
Section 2.4 were applied to the word length optimization of a CDMA
demodulator design in Section 2.4.5. From the CDMA case study, the
sequential search appears to be one of the promising methods for find-
ing an optimum word length. In this section, the complexity measure,
distortion measure, and complexity-and-distortion measure in Section
3.2 are applied in the sequential search framework to determine word

38 Word Length Optimization for Hardware Implementation

Encoder
OFDM

Modulator

Wireless
Channel
Model

OFDM
Demodulator

Channel
Estimator

Decoder
BER

Tester

Data
Source

Channel
Equalizer

w0w1

w2w3

Figure 3.1: Word length model for a fixed-broadband wireless access
demodulator.

lengths for a fixed-broadband wireless demodulator.

Fixed-broadband wireless access technology is intended for high-
speed voice, video, and data services, which are presently dominated
by cable and digital subscriber line technologies [71]. One of the de-
signs for orthogonal frequency division multiplexing (OFDM) demodu-
lators for fixed-broadband wireless access is shown in Fig. 3.1. For the
wireless channel, Stanford University Interim models are used [72] [73].

The main blocks in the demodulator for finite word length determi-
nation are the fast Fourier transform (FFT), equalizer, and estimator.
The word lengths, that have the most significant impact on complexity
and distortion in the system, are chosen. In the OFDM demodulator,
word length variables of w0, w1, w2, and w3 are selected for the FFT
input, equalizer right input, channel estimator input, and equalizer
upper input, respectively, as shown in Fig. 3.1.

The internal word lengths of the given blocks are assumed to be
predetermined. In simulation, only the inputs to each block are con-
strained to be in fixed-point type, whereas the blocks themselves are
simulated in floating-point type.

3.3 Case Study 39

For the hardware complexity, the number of multiplications is mea-
sured assuming that processing units are not reused. The number of
multiplications in a K-point FFT block is

CostFFT =
K

2
log2 K. (3.8)

where K is the number of taps. The cost of the 256-point FFT in
the fixed broadband wireless access is estimated to be 1024. The
simplified complexity vector c of the word length per bit is assumed
to be approximately {1024, 1, 128, 2} from [2] [74].

Another assumption is that the complexity increases linearly as
word length increases to simplify demonstration. For the distortion
measurement, the bit error rate (BER) is measured. The minimum
word length searched by changing one word length variable while other
variables have high precision (i.e., 16 bits) is used for the initial word
length [2] [24]. The simulation for the minimum word length is shown
in Fig. 3.2.

Assuming the minimum performance of BER is 5× 10−3, from the
Fig. 3.2, the minimum word length is {5, 4, 4, 4}. Starting from the
minimum word length, word lengths are increased according to the
sensitivity information of different measures in Section 3.2. The num-
ber of iterations was measured until they find their own optimum word
length satisfying the required performance, such as BER ≤ 2 × 10−3,
without a channel decoder. For the optimum word length, the hybrid
procedure [11] which combines a word length increase followed by a
word length decrease was used. The simulation results are presented
in Section 3.4.

3.3.2 Infinite Impulse Response Filter

The OFDM demodulation case requires a large number of long simula-
tions, which becomes especially time-consuming when each simulation

40 Word Length Optimization for Hardware Implementation

4 6 8 10 12 14 16

10
−3

10
−2

Wordlength

B
E

R

w
0

w
1

w
2

w
3

Figure 3.2: Word length effect for the demodulator in Fig. 3.1, with
Stanford University Interim wireless channel model Number 3, SNR
of 20 dB, FFT length of 256, and least squares comb type channel
estimator without error control coding.

Table 3.1: Simulation results of several search methods starting from
the minimum word length for the demodulator arcs in Fig. 3.1. N =
4, wk = {5, 4, 4, 4}, wk = {16, 16, 16, 16}. CDM is complexity-and-
distortion measure. αc is weighting factor.

Search αc Number Word lengths for Complexity
Method of Trials Variables Estimate

Sequential [24] 0 16 {10,9,4,10} 10781
CDM 0.5 15 {7,10,4,6} 7702

Local [23] 1 69 {7,7,4,6} 7699

3.4 Results of Sensitivity Measurements 41

Output

Delay−a1 b1

b0

Input
w1 w4

w3 w2 w5 w6

w7

Figure 3.3: First-order direct form-II IIR filter.

takes hours of BER estimation. For a more general case, the infinite
impulse response (IIR) filter that has 7 word lengths is simulated as
shown in Fig. 3.3. The pole/zero plot for the IIR filter used in this
case study is shown in Fig. 3.4. There are various methods for deriving
the error function and cost function. For simplifying the simulation,
the mean square error (MSE) is measured for the error function, and
a linear cost function of word length is assumed. The required perfor-
mance of the IIR filter is assumed to be an MSE of 0.1. The results
are presented in Section 3.4.

3.4 Results of Sensitivity Measurements

The word length optimization problem is a discrete optimization prob-
lem with a nonconvex constraint space [75]. This nonconvexity makes
search for a global optimum solution more difficult [76]. Table 3.1 and
Table 3.2 show that there are several local optimum word lengths that
satisfy error specification and minimize hardware complexity in the
case studies. In this section, word length optimization methods used
in the case studies are compared in terms of number of iterations and
hardware complexity, and future work is discussed.

42 Word Length Optimization for Hardware Implementation

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 3.4: Pole/zero plot for the IIR filter

Table 3.2: Simulation results in IIR filter of several search meth-
ods. N = 7, wk = {1, 1, 1, 1, 1, 1, 1}, wk = {16, 16, 16, 16, 16, 16, 16}.
CDM is the complexity-and-distortion measure. αc is weighting factor.
(Max-1 search starts from wk. Sequential search starts from wk)

Search αc Number Word lengths for Complexity

Method of Trials Variables Estimate

Max-1 [11] 0 94 {4,5,4,5,2,2,4} 378

Sequential [24] 0 56 {4,5,4,5,2,2,4} 378

CDM 0.25 44 {4,5,4,4,2,2,5} 366

CDM 0.5 33 {6,5,5,4,1,2,4} 363

CDM 0.75 71 {6,4,4,4,2,16,13} 561

Local [23] 1 126 {9,5,16,4,1,16,16} 723

3.4 Results of Sensitivity Measurements 43

3.4.1 Number of Iterations

The number of iterations to search an optimum word length in the
OFDM demodulator design is shown in Fig. 3.5. The initial word
length does not satisfy the desired performance. After a number of
trials by updating the word length as in (2.9), the error at the system
output decreases. The sequential search and the CDM search reach
a feasible area after 15 trials. However, the local search takes 38
trials. After arriving at the feasible area, an optimum word length is
searched again. In this case, the word lengths, which are searched by
the sequential search or the CDM search, already arrive at an optimum
word length. However, the local search needs more iteration to find an
optimum word length. The total number of trials to find an optimum
word length in each method for the OFDM case is shown in Table 3.1.
The sequential search and the CDM method can find an optimum
solution in one-fourth of the time that the local search method takes.

In the IIR filter design, the number of iterations to search an opti-
mum word length is shown in Fig. 3.6. This figure demonstrates the
number of trials in infeasible area and feasible area. After the search
methods reach a feasible region where the MSE of the IIR filter is un-
der 0.1, the search methods continue searching for an optimum word
length. The sequential search and the local search need a total of 56
and 126 iterations, respectively, including iterations in feasible and in-
feasible areas, as shown in Table 3.2. The max-1 search starting from
the feasible area needs 96 iterations. The CDM methods with weight-
ing factors of 0.25, 0.5, and 0.75 are used for comparison. When αc is
less than 0.5, the CDM methods have the properties of the sequential
search. When αc is greater than 0.5, the CDM methods search in the
same manner as the local search does. In Fig. 3.6, the CDM methods
with weighting factors of 0.25 and 0.75 show shapes similar to those
of the sequential search and the local search, respectively. In the IIR
filter case, the CDM method with an αc of 0.5 can find an optimum

44 Word Length Optimization for Hardware Implementation

5 10 15 20 25 30 35

10
−3

10
−2

Number of trials

B
E

R

Sequential Search
CDM Search (α

c
=0.5)

Local Search

Figure 3.5: Number of iterations for optimum word length with various
search algorithms in OFDM demodulator word length design.

solution in one-fourth the time that the local search method takes.
In general, if error sensitivity information for searching an optimum

word length is used, the number of iterations can be reduced. The
sequential search and the CDM method with an αc less than 1 use the
error sensitivity information. Thus, two methods converge quickly into
an optimum word length that satisfies the required error performance.

3.4.2 Hardware Complexity

Table 3.1 and Table 3.2 show the hardware complexity according to the
searched optimum word lengths in various methods. The results show
that the sequential search method, which only uses error sensitivity
information for the update direction, finds an optimum word length
that has higher complexity than those found by the CDM method and
the local search in the OFDM demodulation case study. However, an

3.4 Results of Sensitivity Measurements 45

20 40 60 80 100 120

10
−1

10
0

10
1

Number of trials

M
S

E

Sequential Search
α

c
=0.25

α
c
=0.5

α
c
=0.75

Local Search

Figure 3.6: Number of iterations for optimum word length in IIR filter
with various search algorithms.

optimum word length searched by the local search method, which
uses hardware complexity information, has higher complexity in the
IIR filter case study. If the design space is convex and has only one
optimum solution, then various search methods can find the optimum
solution. However, word length optimization problem has many local
optimum solutions because of the nonconvex space. As the number
of word length variables increases and as the system becomes more
complicated, the probability of becoming stalled in a local optimum
solution increases. In the IIR filter case with seven elements in the
word length vector, the word lengths searched by the local search
method are far from globally optimal.

In the IIR filter case study, the CDM search with a weighting factor
of 0.5 finds an optimum word length that has the lowest hardware
complexity. The CDM search with a weighting factor of 0.75 tends to

46 Word Length Optimization for Hardware Implementation

Table 3.3: Simulation results in noise cancellation with Wiener filter
[77] of several search methods. N = 5, wk = {1, 1, 1, 1, 1}, wk =
{16, 16, 16, 16, 16}. CDM is complexity-and-distortion measure. αc is
weighting factor.

Search αc Number Word lengths for Complexity

Method of Trials Variables Estimate

Sequential [24] 0 21 {4,5,5,3,2} 1331

CDM 0.25 23 {4,4,5,4,2} 1200

CDM 0.5 24 {5,4,4,5,4} 1074

CDM 0.75 167 {4,4,4,5,4} 1073

Local [23] 1 170 {5,4,4,15,3} 1082

be the local search. The hardware complexity from the CDM method
with a weighting factor of 0.75 is between that of the CDM with a
weighting factor of 0.5 and the local search. Similarly, the complexity
from the CDM method with a weighting factor of 0.25 is between that
of the sequential search and the CDM with a weighting factor of 0.5.

For more examples, additional optimum word length search results
from a noise cancellation with the Wiener filter [77] are shown in Table
3.3.

3.4.3 Discussion

The CDM method, which uses error and complexity sensitivity for op-
timum word length search, has the advantages of the sequential search
and the local search. This method reduces the number of iterations
because of the error sensitivity that helps to reach a feasible boundary
quickly. At the same time, this method finds a near-optimum word
length that has lower hardware complexity because of the sensitivity

3.5 Results of Genetic and Evolutionary Algorithms 47

of hardware complexity. The proposed method is robust for the search
of an optimum word length in a non-convex space because this method
is not easily captured by local optimum solutions.

The complexity-and-distortion measure method has the flexibility
to search for an optimum word length by setting a weighting factor.
The designer can select the weighting factor αc as in (3.5). The αc

of 0.5 means that the CDM method uses equally the sensitivity infor-
mation of the error and of the complexity. The αc of 0.5 in CDM is
reasonable for optimum word length search algorithms.

For an extension of this work, various methods can be combined
for word length optimization. Word length grouping [2] can be used
to reduce a word length vector. An error model or error monitoring
instead of error measuring can be used to reduce the simulation time.
An actual cost model [13] can be used to obtain accurate results.
For the search method, different methods, such as a binary search,
can be combined. The pre-planned search, which is the fastest error
sensitivity search method according to comparisons in [11], can employ
CDM methods to reach a near-optimum word length more quickly.

3.5 Results of Genetic and Evolutionary

Algorithms

Simulation results utilizing multiple objective genetic and evolutionary
algorithms on word length design in an IIR filter are shown in Fig.
3.7 and Fig. 3.8. The total hardware area, one of the objectives, is
evaluated by the area model of the arithmetic unit in [12]. The error
between the floating-point output and fixed-point output are measured
by simulations.

The results in the IIR filter with seven word length variables are
shown in Fig. 3.7. Since the genetic algorithm mimics the evolution-

48 Word Length Optimization for Hardware Implementation

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (35/90)

dom (55/90)

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (67/90)

dom (23/90)

(a) 50th generation (b) 100th generation

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (76/90)

dom (14/90)

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (90/90)

(c) 250th generation (d) 500th generation

Figure 3.7: Results of multiple objective genetic and evolutionary al-
gorithms in the IIR filter case study with seven word length variables
(Population for one generation is 90)

3.5 Results of Genetic and Evolutionary Algorithms 49

ary process of plants and animals, each generation shows different re-
sults. Fig. 3.7 shows nondominated and dominated (inferior) solutions
at each generation. The plot of the objective functions whose non-
dominated vectors are in the Pareto optimal set is called the Pareto
front. After many generations, the Pareto front tends to move toward
the left and downward. The number of dominated solutions decreases
as the number of generations increases. The 500th generation has only
non-dominated solutions.

Designers have a choice of word length solutions according to the
Pareto front. The Pareto front gives the tradeoff curve in hardware
area and finite precision output error. A smaller area requires a larger
error, and a larger area needs a smaller error. Thus, the obtained
Pareto front gives designers flexibility in a system design.

Note that the Pareto front in a descendant is not always better
than that in ancestor. The solution for an error of 10−2 at the 250th
generation required 90 lookup tables (LUTs). However, the solution
for the same error at the 500th generation needs at least 100 LUTs.
Thus, the 250th generation has a better solution for the error of 10−2

than the 500th generation. The offspring could be worse than their
ancestors because the genetic and evolutionary algorithm utilizes a
random process throughout selection, mating, and mutation.

The genetic and evolutionary algorithm is computationally inten-
sive. It requires many simulations for errors in each population as well
as the genetic operations of selection, mating, and mutation for each
generation. Considering only the number of simulations for errors, the
500th generation requires 45000 (= 500 generations ∗ 90 populations)
simulations.

A reduced number of variables can reduce the number of simula-
tions. Fig. 3.8 shows results in the IIR filter study with three word
length variables. The word length at the output of the multipliers
are selected for three variables. The results show the same trends as
with seven word length variables. However, all solutions at the 250th

50 Word Length Optimization for Hardware Implementation

generation are non-dominated. Thus, 22500 (= 250 generations ∗
90 populations) are sufficient for three variables in this case study.

The Pareto fronts in Fig 3.7 and Fig 3.8 are calculated based on the
current generation. Offspring sometime show worse Pareto fronts than
their predecessors. For example, the Pareto front at the 250th genera-
tion in Fig. 3.8 looks partly worse than that at the 100th generation.
Storing and comparing non-dominated solutions in all generations can
generate a better Pareto front.

3.6 Comparison

The gradient-based search algorithms and genetic algorithms are com-
pared. Results from gradient-based search algorithms with the FPGA
area models are superposed on the results from a genetic algorithm
in Fig. 3.9 and Fig. 3.10. Three desired root mean square (RMS)
values of 0.08, 0.1, and 0.12 are given, since the gradient-based search
algorithms generate one solution each. DM, CDM, and CM are used
as gradient-based search algorithms. Automated transformation tools
from floating-point to fixed-point, which are explained in Section 5,
are used for the gradient-based search algorithm and the genetic al-
gorithm as a search engine. One word length variable at each output
is generally assigned for the automated transformation in the IIR fil-
ter. For example, in Fig. 3.3, the delay output has one word length
variable instead of two word length variables, and the one word length
variable is added to the output of the IIR filter. Seven word length
variables are used in simulations of the fixed-point IIR filter.

The solutions from the gradient-based search algorithms are similar
to the Pareto front in the genetic algorithm at the 50th generation.
The RMS error of 0.1 needs approximately 50 LUTs in both meth-
ods. However, at the 500th generation the genetic algorithm finds
better solutions than the gradient-based search algorithms, as shown

3.6 Comparison 51

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (27/90)

dom (63/90)

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (47/90)

dom (43/90)

(a) 25th generation (b) 50th generation

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (72/90)

dom (18/90)

20 40 60 80 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (90/90)

(c) 100th generation (d) 250th generation

Figure 3.8: Result of multiple objective genetic and evolutionary al-
gorithms in the IIR filter case study with three word length variables
(Population for one generation is 90)

52 Word Length Optimization for Hardware Implementation

10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom (35/90)
dom (55/90)
DM
CDM
CM

Figure 3.9: Overlap genetic evolutionary algorithm results in 50th
generation with gradient-based search results for the IIR filter case
study with seven word length variables (Required RMS for gradient-
based search ≤ {0.12, 0.1, 0.08}

in Fig. 3.10. This difference demonstrates that the gradient-based
search methods are trapped by local optima. However, the genetic
algorithm can avoid local optima.

With the respect to computational complexity, gradient-based search
algorithms need smaller numbers of computation compared to the ge-
netic algorithm. The gradient-based search algorithms require 145
simulations for CDM and 417 for CM, whereas the genetic algorithm
needs 4,500 simulations to obtain a similar result and 45,000 simu-
lations for the 500th generation. Furthermore, the genetic algorithm
requires computations to execute genetic operations at every genera-
tion.

A random search algorithm, which randomly selects samples or
candidates, can find solutions. For comparision with the random
search algorithm, word length samples of 45,000 are randomly selected.

3.6 Comparison 53

10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

non−dom(90/90)
DM
CDM
CM

Figure 3.10: Overlap genetic evolutionary algorithm results in 500th
generation with gradient-based search results for the IIR filter case
study with seven word length variables (Required RMS for gradient-
based search ≤ {0.12, 0.1, 0.08}

The Fig. 3.11 shows the result of random search. The Pareto front
of the genetic algorithm as shown in Fig. 3.7 (d) is better than that
of the random search algorithm as shown in Fig. 3.11. This simula-
tion result shows that the genetic algorithm outperforms the random
search algorithm with the same number of samples.

Parallel processing can decrease the running time. The genetic
algorithm is amenable to parallel and distributed simulations. The
genetic algorithm can be parallelized up to the number of populations
since individuals can be evaluated independently. However, gradient-
based search algorithms are limited in their use of parallelism be-
cause gradient-based search algorithms evaluate the next neighbors
and move a current point to one of the neighbors. Thus, the gradient-
based search algorithm can be parallelized only up to the number of
neighbors or word length variables.

54 Word Length Optimization for Hardware Implementation

10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

Area (LUTs)

E
rr

or
 (

R
M

S
)

Figure 3.11: Result of random search algorithm in the IIR filter study
with seven word length variables (45,000 samples)

3.7 Summary

Word length optimizing methods with sensitivity measures are gen-
eralized by equations and compared. The proposed complexity-and-
distortion measure equation can express the local search or sequential
search by changing the weighting factors. The weighting factor can re-
duce the number of iterations and the hardware complexity compared
to those of the local search and the sequential search, respectively. In
our case studies, the complexity-and-distortion method is simulated
and compared. The proposed method can find the optimum solution
in one-fourth of the time that the local search takes. In addition, the
optimum word length searched by the proposed method has 30% less
hardware implementation costs than the sequential search in wireless
demodulators.

Multi-objective genetic and evolutionary algorithms provide a Pareto
front with which designers can decide on an optimum word length set

3.7 Summary 55

with tradeoffs in signal distortion and hardware complexity. When the
genetic algorithms are compared with the search algorithms, the word
length from the gradient-based search algorithms are local optima.
However, genetic algorithms have long running time.

In conclusion, word length search algorithms utilizing genetic and
evolutionary algorithms can optimize the tradeoff between signal qual-
ity and implementation complexity. Alternatively, word length search
algorithms utilizing gradient information can provide faster ways to
find data word lengths, but they get caught in local optima.

56 Word Length Optimization for Hardware Implementation

Chapter 4

Word Length Reduction for
Lowering Power
Consumption

4.1 Introduction

Computing systems demand the minimization of power dissipation,
because of limited battery power in portable computing and the dif-
ficulty of cooling during high-speed signal processing. Many methods
have been developed to reduce power consumption. Lowering the sup-
ply voltage and minimizing the hardware are used for low-power hard-
ware [78]. Changing the instruction order and reducing the number
of operations are used for low-power software [79]. A major focus of
low-power design is to reduce switching activity to the minimal level
required to perform the computation, since, to a first order, the power
consumption of CMOS circuits is proportional to the number of gate
transitions [80].

Multipliers are usually a major source of power consumption in

58 Word Length Reduction for Lowering Power Consumption

typical DSP applications. Multiprecision multipliers have been devel-
oped for low-power consumption [81,82]. In multiprecision multipliers,
multiplications are performed by 8-bit, 16-bit, or 24-bit circuits, ac-
cording to the input operand size. Power reductions of up to 66% are
achieved in [81] and 58% in [82]. However, arbitrary operand sizes
such as 10 bits are not accommodated efficiently in these approaches.
A word length reduction technique has been proposed in [83] to select
any word size. The word length reduction technique shows a 72% re-
duction of average gate transitions. An extension of the word length
reduction technique is presented in this chapter.

Overviews of word length reduction techniques and power reduc-
tion methods are presented in Sections 4.2 and 4.3, respectively. Ex-
pectation values of bit switching in inputs are derived in Section 4.4.
A radix-4 modified Booth multiplier and a Wallace multiplier, which
are used in simulations, are explained Section 4.5. Power consumption
in these multipliers is estimated for FPGA implementations in Section
4.6. Also, the power consumption of multipliers where the operands
are of different sizes is estimated and compared.

4.2 Word Length Reduction

Multiprecision multipliers have a few choices of operand precision due
to hardware limitations [81, 82]. The multiprecision multiplier does
not accommodate arbitrary precision, because of its fixed hardware
structure. For example, with 10-bit operands, a multiprecision multi-
plier, which supports 8-bit and 16-bit multiplication, has to use 16-bit
multiplication with 6 unnecessary bits. Data word length reduction
techniques can reduce the unnecessary switching activity.

There are two kinds of data word length reduction. One is re-
duction via right-shifting, and the other is reduction via left-shifting,
that is, with truncation. The right-shifting method moves data from

4.2 Word Length Reduction 59

(c) Reduction by signed right shift

0001 0010 0011 0100

1101 1100 1010 1001

(a) Original multiplication

1101 1100 0000 0000

(b) Reduction by truncation

0000 0000 0001 0010

1111 1111 1101 1100

0001 0010 0000 0000

Figure 4.1: Example of 8-bit data word length reduction

the most significant (MS) side to least significant (LS) side with sign
extension. The sign extension bits are all 1s when the operand is neg-
ative and all 0s when the operand is positive. The truncation method
removes data from the LS side. An example of an 8-bit reduction
from 16-bit multiplication is shown in Figure 4.1. The original 16-bit
multiplication is shown in Figure 4.1(a). The reduction by an 8-bit
right-shift moves 8 bits data in the MS side to the LS side with sign
extension as shown in Figure 4.1(b). The signed right shifted value
becomes 1111 1111 1101 1100, because the original value, 1101 1100
1010 1001, is negative. The reduction by 8-bit truncation removes the
8-bit data in the LS side by masking the input data with 1111 1111
0000 0000, with the result shown in Figure 4.1(c).

60 Word Length Reduction for Lowering Power Consumption

4.3 Power Consumption

4.3.1 Power Analysis

There are three major sources of power dissipation in digital CMOS
circuits that are summarized in the following equation [80]:

Pavg = Pswitching + Pshort−circut + Pleakage. (4.1)

The first term represents the switching component of power, the sec-
ond term derives from the direct-path short-circuit current conducting
directly from the supply to the ground, and the leakage power is pri-
marily determined by the fabrication technology.

The switching component of average power is

Pswitching = αCLV 2
ddfclk (4.2)

where α is the switching activity parameter, CL is the load capaci-
tance, Vdd is the operating voltage, and fclk is the operating frequency.
The switching power can be reduced through operation reduction,
choice of number representation, exploitation of signal correlations,
logic design, and physical design. The switching activity can also be
reduced by optimizing the ordering of operations and by minimizing
the number of operations.

The term αCL can also be viewed as the effective switching capac-
itance of the transistor nodes from charging and discharging. There-
fore, minimizing switching activities can effectively reduce power dis-
sipation without impacting the operational performance of the cir-
cuit [84].

Directly measuring the power consumption is difficult. The average
number of transitions is usually used as an estimate of the requirement.

4.3 Power Consumption 61

4.3.2 Software Power Minimization

Tiwari et al. [85] attempted to systematically model the software
power cost, because of the increasing demand for a software power
analysis tool. They formulated an instruction-level power model for
the microprocessor after measuring the power of the instruction sets.
This approach made it possible to compare programs in terms of their
energy consumption.

Lee et al. [79] developed power analysis and minimization tech-
niques for embedded DSP software. They found that in typical DSP
applications, the multiplier in the multiply-and-accumulate (MAC)
unit is usually a major source of power consumption. A micro archi-
tectural power model for the multiplier was developed and analyzed
for further power minimization. They observed a wide power varia-
tion of MAC instructions mainly according to the two values being
multiplied in the MAC unit.

They also used the operand-swapping technique for a Booth mul-
tiplier [86], which does not treat the two inputs symmetrically. Their
experiment showed that swapping the operations in Register A and B
can reduce the power for MAC instructions. They also used instruc-
tion packing, instruction scheduling, and memory bank assignment to
reduce energy consumption.

4.3.3 Minimizing Word Length for Low Power

Chandrakasan et al. [87] showed that the word length affects all key
parameters of a design, including speed, area, and power. Choi and
Burleson [23] presented a general search-based methodology for word
length optimization and used a switching power model for power dis-
sipation. Considering a voltage-dropping factor and the area of the
computing elements according to the word lengths, they analyzed the
switching power consumption, assuming that the power dissipation

62 Word Length Reduction for Lowering Power Consumption

was proportional to the area of computing element.

Erdogan and Arslan [88] showed low-power multiplication schemes
for finite impulse response (FIR) filters on DSP processors. They used
a data bus and a coefficient bus separately for the filtering operation.
They measured the switching activity of 8-, 16-, and 32-bit array mul-
tipliers for filter orders of 32, 64, and 128. They achieved up to a 63%
reduction in switching activity by ordering of coefficient and using a
pre-calculated value memory.

Chen et al. [84] presented low-power two’s complement multipli-
ers by minimizing the switching activities of partial products using
the Radix-4 modified Booth algorithm [89]. They used the fact that
the switching activities of the unused functional blocks are minimized
when the input bits of unused functional blocks remain unaltered.
They increased the probability that the partial products become zero
by swapping input data.

Word length can also be changed by reconfiguring the multiplier.
Kim and Papaefthymiou [90] proposed a reconfigurable pipelined mul-
tiplier architecture by adapting its structure to computational require-
ments over time. It can efficiently cope with variable data-rate multi-
media applications such as video processing. The multiplier structures
can dynamically reconfigure to lower their power consumption based
on zero-valued inputs and input-rate variations.

4.3.4 Power Reduction via Word Length Reduc-
tion

Minimizing switching activity can effectively reduce power dissipation
without impacting circuit performance [84]. Word length reduction
methods in Section 4.2 can minimize switching activity at the expense
of data precision, as in [83]. The minimized switching activity reduces
power consumption as shown in (4.2).

4.4 Expectation of Switching 63

The word length reduction methods can be applied to low-power
instruction-based processors or FPGA/reconfigurable hardware. The
truncation method is implemented by adding mask modules, which
consist of N-bit AND gates, in front of the multiplier inputs. The
signed right-shift method uses shift registers and sign extension units.
Therefore, the truncation method needs less extra hardware than the
signed right-shift method for its implementation.

4.4 Expectation of Switching

Power consumption in CMOS digital circuits is proportional to switch-
ing activity in logic gates. Logic gates in multipliers are switched after
input multiplicand data are changed from the previous data. The to-
tal number of gates that switch is used to calculate switching power
consumption. It is difficult to predict the overall number of gates that
switch in a multiplier because of the glitch effect, which unexpectedly
increases the switching activity.

Multiplicand inputs propagate the switching activity into inner
logic gates in a combinational multiplier. The expected value of input
switching is a meaningful factor to predict the number of gates that
switch in a multiplier. In this section, the expected value of the number
of gates is estimated that switch in L-bit inputs and M -bit reduction
by truncation or signed right-shift methods.

4.4.1 L-Bit Input

Let X be a random variable of the number of total bits switched
in word length L, as in Fig. 4.2. Each bit in the data has equal
probability of bit switching such as zero to one or one to zero, when
new input data are given in previous data locations. The probability
of the switching of each bit is 1

2
. The switching probability in X has

64 Word Length Reduction for Lowering Power Consumption

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

���� �
�
�
�
�
�
�
�
�
�
�
�

������ �
�
�
�
�
�
�
�
�
�
�
�S 0 0 0 00/10/1 0/1

(c) N bits truncation

�������
�
�
�
�
�
�
�
�
�
�
�

0/10/10/1SSS S S

(b) N bits signed right shift

M bits N bits

L bits

0/10/10/10/10/10/10/1

(a) Original data

S
��

Figure 4.2: Bit operation in effective bits, M . S is a signed bit

binomial distribution:

PX(x) =

(

L

x

)

(
1

2
)x(

1

2
)L−x (4.3)

The expected value of X is

E(X) =
L

∑

x=0

x · PX(x) (4.4)

The expected value of a binomial distribution with probability p and
the number of trials l is l · p. The expected value of switching in L
bits can be simplified to

E(X) = L · p (4.5)

=
L

2
. (4.6)

Thus, expected value of switching in L bits is half of L bits.

4.4 Expectation of Switching 65

4.4.2 N-Bit Truncated Data in L-Bit Input

The effective bit width can be reduced by truncation. When truncated
data are consecutively used as input data, only the remaining bits have
a probability of switching, as shown in Fig. 4.2(b). N -bit truncated
data in L-bit width input have L − N effective width to be switched,
whereas N bits have always zero values. The expectation of N -bit
truncated data in L-bit inputs is

Etr(X) =
L − N

2
(4.7)

=
M

2
(4.8)

where M is the number of bits that are not truncated. These equations
show that the expectation value of switching in truncated data is half
of the remaining data width.

4.4.3 Signed Right Shift

The effective bit width can be reduced by right shifting. The signed
right shift moves data to right side with the sign bit filled into the
vacated bit positions. N -bit signed right-shifted data in L-bit input
add N additional sign bits, as shown in Fig. 4.2 (c). The expected
value of switching in N -bit signed right-shifted data can be obtained
using a conditional expectation [91] with a random variable, Y, of a
sign bit switching as follows:

Ers(X) = E(E(X|Y)) (4.9)

=
1

∑

s=0

P (Y = s)E(X|Y = s) (4.10)

=
1

2
E(X|Y = 0) +

1

2
E(X|Y = 1) (4.11)

66 Word Length Reduction for Lowering Power Consumption

Where: s is the sign bit. The first term in the right side in (4.11)
gives the expected value when the sign bit is not changed. Thus, only
M − 1 bits change. From Eqs. (4.3), (4.4), and (4.6), the first term of
conditional expectation value (4.11) becomes

E(X|Y = 0) =
M−1
∑

x=0

x ·

(

M − 1

x

)

(
1

2
)x(

1

2
)M−1−x (4.12)

=
M − 1

2
(4.13)

where M = L − N .
The second term in the right side in (4.11) is the conditional expec-

tation when the sign bit is switched. The N -bit signed right-shifted
data have N + 1 sign bits as shown in Fig. 4.2 (c). The conditional
expectation of the switched sign bit, E(X|Y = 1), is

M−1
∑

x=0

(x + N + 1)

(

M − 1

x

)

(
1

2
)x(

1

2
)M−1−x (4.14)

The x in the summation in (4.14) can be separated as

M − 1

2
+

M−1
∑

x=0

(N + 1)

(

M − 1

x

)

(
1

2
)x(

1

2
)M−1−x (4.15)

=
M − 1

2
+

M−1
∑

x=0

(N + 1)

(

M − 1

x

)

(
1

2
)M−1 (4.16)

In general, the sum of all the combinations of K distinct items
gives

K
∑

x=0

(

K

x

)

= 2K (4.17)

4.4 Expectation of Switching 67

Table 4.1: Expectation of switching in L bit input

Inputs Expectation of switching

Full length used L/2
N bit truncation M/2

N bit signed right shift L/2

Using (4.17) and (4.16) yields the conditional expectation value as
follows:

E(X|Y = 1) =
M − 1

2
+ (N + 1)(

1

2
)M−12M−1 (4.18)

=
M

2
+ N +

1

2
(4.19)

From (4.13) and (4.19), the expectation of switching data in (4.11)
can be simplified to

Ers(X) =
1

2
(
M − 1

2
) +

1

2
(
N

2
+ N +

1

2
) (4.20)

=
M + N

2
(4.21)

=
L

2
(4.22)

The expected value of the number of bits switched in N -bit signed
right-shifted data in L-bit input is half of L regardless of the signed
right shift. Therefore, the expected value of switching in signed right-
shifted input is the same as for an unshifted input. The expected
values are summarized in Table 4.1 and shown in Fig. 4.3.

68 Word Length Reduction for Lowering Power Consumption

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

Bits (M)

E
xp

ec
ta

tio
n

Full length used
M bit truncation
M bit signed right shift

Figure 4.3: Expectation of number of switching bits in inputs

4.5 Multiplier

The hardware multiplier on most programmable DSPs uses either a
Wallace multiplier or a Radix-4 modified Booth multiplier [89]. For
example, the TI TMS320C64 uses the Wallace algorithm, and the TI
TMS320C62 uses the Radix-4 modified Booth algorithm.

4.5.1 Wallace Multiplier

In a tree-based multiplier, partial products are added using full adders
or half adders. In 1964, Wallace showed a tree structure, which is an
efficient method to add partial products [92]. A Dadda dot diagram
of a 4-bit Wallace multiplier is shown in Figure 4.4. Rows are grouped
into sets of three during each reduction stage. Within each three-
row set, (3,2) counters reduce columns with three bits to two bits

4.5 Multiplier 69

Half adder

Full adder

Figure 4.4: Dadda dot diagram for a 4-bit Wallace multiplier

and (2,2) counters reduce columns with only two bits. Rows that are
not part of a three-row set are transferred to the next stage without
modification [93].

4.5.2 Radix-4 Modified Booth Multiplier

Booth recoding is a commonly used technique to recode one of the
operands in binary multiplication. Fig. 4.5 shows a radix-4 modified
Booth multiplier of a×x. A two’s complement multiplier, x, is recoded
as a radix-4 number, z, that dictates the multiples -2a, -a, 0, a, and 2a
to be added to the cumulative partial product. The radix-4 Booth’s

70 Word Length Reduction for Lowering Power Consumption

X
Init. 0

Recoding
Logic

xi+1 xi xi-1

Add / Sub

Mux

a -2a-a2a

a

2-Bit shift

P

0

z

Figure 4.5: A Radix-4 multiplier based on Booth’s recoding. The a
and x are multiplicands. P is product of multiplication. Three bits in
X are recoded to z.

recoding is shown in Table 4.2.

4.6 Simulation Results

A 16-bit Wallace multiplier and a 16-bit Radix-4 modified Booth mul-
tiplier are used for power estimation with data word length reduc-
tion. The multipliers are synthesized for Xilinx, XC3S200-5FT256
FPGA [94]. The XPower tool estimates the power consumption of

4.6 Simulation Results 71

Table 4.2: Radix-4 Booth’s recoding. The a and x are multiplicands.
Three bits of x are recoded into z.

xi+1 xi xi−1 z action
0 0 0 0 0
0 0 1 1 a
0 1 0 1 a
0 1 1 2 2a
1 0 0 -2 -2a
1 0 1 -1 -a
1 1 0 -1 -a
1 1 1 0 0

this FPGA with different operand sizes. The dynamic power is esti-
mated across VCCINT, which is a power-supply pin of the dedicated
internal core with a 1.2 V supply. The operational frequency of the
multipliers is set to 1 MHz.

Power estimates for a 16-bit Wallace multiplier are shown in Fig-
ure 4.6. An average power of 0.45 mW is consumed with 16-bit data
operands in the Wallace multiplier. As the operand size is reduced,
the truncation method decreases the power consumption. The aver-
age power reduction in 8-bit word length reduction by the truncation
method is 56%. The right-shift method shows little or no power re-
duction due to the sign extension. The extended sign bits are added to
the input whenever a right shift occurs. These bits affect the switching
activity. Therefore, the signed right-shift method is not recommended
for low-power Wallace multipliers.

Power estimates for a 16-bit radix-4 modified Booth multiplier are
shown in Figure 4.7. A power of 0.52 mW is consumed with 16-bit
operands in the Booth multiplier. As the data word length is reduced

72 Word Length Reduction for Lowering Power Consumption

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Input wordlength (w)

P
ow

er
 (

m
W

)

Signed right shift
Truncation
(w,16)
(16,w)

Figure 4.6: Dynamic power consumption in 16-bit × 16-bit Wallace
multiplier (1MHz)

by either the truncation method or the signed right-shift method, the
average power consumption decreases. The average power consump-
tion for multipliers with 8-bit operands implemented by the signed
right-shift and the truncation methods are decreased by 25% and 31%,
respectively.

The power consumption for the Wallace multiplier as shown in
Figure 4.6 shows a trend that matches the expectations from Figure
4.3. The amount of switching is not changed in signed right-shift input,
but it is changed in truncated input as the effective input word length
changes. However, in the Booth multiplier, the power consumption of
the signed right-shift input as shown in Figure 4.7 is changed as the
input effective word length changes.

The average power consumption is also estimated when operands
have unequal sizes. One of the operands is reduced with the truncation
method, while the other operand is fixed at 16 bits. The first and the

4.6 Simulation Results 73

0 2 4 6 8 10 12 14 16
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Input wordlength (w)

P
ow

er
 (

m
W

)

Signed right shift
Truncation
(w,16)
(16,w)

Figure 4.7: Dynamic power consumption in 16-bit × 16-bit Radix-4
modified Booth multiplier (1MHz)

second element in the parentheses in Figure 4.6 and Figure 4.7 repre-
sent two multiplicands in multiplication. When operands are swapped,
such as (A by X) to (X by A), the power consumption shows different
results. For the Wallace multiplier, there is a small difference, but the
Booth multiplier has a large difference because of its asymmetric struc-
ture. The first and the second operand in the Booth multiplier rep-
resent a recoded input, X, and a non-recoded input, A, respectively,
as shown in Fig. 4.5. The result shows that when the non-recoded
level of input precision is reduced, the average power decreases by 13%
more than when the recoded input is reduced for an 8-bit word length
reduction. The reason is that the non-recoded input, which is routed
to multiplexers and to adder/subtracter logic, affects more power con-
sumption than the recoded input. Therefore, in the Booth multiplier,
data word length reduction in the non-recoded operand achieves more
power reduction than that in the recoded operand.

74 Word Length Reduction for Lowering Power Consumption

4.7 Summary

Two kinds of input data word length reduction methods in multipli-
ers have been examined and analyzed for low power consumption. A
truncation method with 8 bits reduces power consumption by 56%
in a 16-bit Wallace multiplier and 31% in a 16-bit radix-4 modified
Booth multiplier. A signed right shift method exhibits no power re-
duction in the Wallace multiplier and 25% reduction in the Booth
multiplier. When the operands have different sizes, the multipliers
also show power reduction. In particular, the non-recoded operand
in the Booth multiplier is 13% more sensitive in power consumption
than the recoded multiplicand. This difference can be exploited in a
low-power digital filter design with low-precision coefficients.

Chapter 5

Automating Transformation
to Fixed Point in Software

5.1 Introduction

Realization of digital signal processing algorithms with the fixed-point
data type provides many benefits, such as savings in power and area.
Typically, however, the algorithms are developed with the floating-
point data type and later transformed to the fixed-point data type with
tradeoffs in signal precision and complexity. Since the transformation
process is time consuming and error prone, many methods have been
proposed and developed to automate the fixed-point transformation
[3, 4, 11,13,15,24].

Fixed-point transformation consists of fixed-point conversion and
word length optimization. Fixed-point conversion is a process of con-
verting floating-point programs to fixed-point programs. During the
conversion, floating-point data type is changed into the fixed-point
data type, and floating-point arithmetic operations are modified to
fixed-point arithmetic operations.

76 Automating Transformation to Fixed Point in Software

Fixed-point digital signal processors (DSP), in which word lengths
have already been given, require fixed-point conversion followed by
scaling to prevent the overflow and underflow of signals. Word length
optimization is required only when the given word length is too short
to satisfy the desired performance or to reduce power consumption, as
explained in Chapter 4.

For the customized IC or FPGA, word lengths of digital systems
can be chosen to any number of widths with tradeoffs in objectives.
Shorter width usually achieves savings in area and power, while signal
distortion is higher. Word length can be optimized by optimization
algorithms [2, 11–13, 15, 24] and those algorithms can also automate
the optimization process.

Most of the algorithms minimize hardware area by satisfying er-
ror specifications. Sometimes, designers make tradeoffs between error
specifications and hardware area instead of fixing one objective. This
book proposes multi-objective word length optimization, which opti-
mizes more than one objective at the same time. Furthermore, an
environment for automating fixed-point transformation is proposed
and demonstrated with a case study.

5.2 Related Work

5.2.1 Fixed-Point Simulation Environment

Many methods have been developed to model fixed-point systems.
TI developed a fixed-point data type in the C++ class to develop
fixed-point DSP algorithms [95]. In [3, 96], a fixed-point simulation
environment is implemented for C and C++ at Seoul National Uni-
versity. By modifying variable declarations of the floating-point code
and overloading operators in the gFix class, the floating-point data
type is converted to the fixed-point data type. A range estimation

5.2 Related Work 77

utility, which estimates statistical data range, is also developed.
In [1], annotation and interpolation techniques to convert the floating-

point data type to fixed-point data type with an analytical range esti-
mation are employed. A commercial tool, the CoCentric Fixed-point
Designer, proposed by Synopsys, is based mainly on the technology
developed in the FRIDGE project [17].

There are many commercial tools for fixed-point simulation envi-
ronments. The Hardware Design System (HDS) developed by CoW-
are [5] provides library, which enables the definition of the design at
the hardware implementation level. The Fixed-Point Toolbox in MAT-
LAB and the Fixed-Point Blockset in Simulink [97,98] were developed
by MathWorks. AccelChip [99,100] released an automatic fixed-point
simulation environment.

In addition, code conversion tools for DSP have been developed
[101, 102]. In [101], for instance, an integer code generator based on
the FRIDGE environment is developed.

5.2.2 Word Length Optimization

Sung and Kum [2] developed a simulation-based word length optimiza-
tion algorithm. Optimum word lengths are searched from a minimum
word length state by increasing word lengths with priority on a hard-
ware block having the lowest hardware cost.

In [12], an area model and a noise model are proposed. For an
objective in optimization, area-based objective functions and error
models are used. A mixed integer linear programming (MILP) model
and heuristic search methods are employed to solve the word length
optimization problems.

Shi and Brodersen [13] use simulation-based methods to evaluate
various sensitivities. Simulation results are used to develop a model
of the system that is used in the optimization. The Mosek optimizer,
which handles single objective optimization, is used as a search engine.

78 Automating Transformation to Fixed Point in Software

Code
Generation

Wordlength
Optimization

Range
Estimation

Figure 5.1: Three phases in automating transformation from floating
point to fixed point

This book presents an environment for automated floating-point-
to-fixed-point transformation that includes a fixed-point conversion
and word length optimization.

5.3 Automating Transformation from Float-

ing Point to Fixed Point

As shown in Fig. 5.1, the transformation from floating point to fixed
point has three phases: code generation, range estimation, and word
length optimization. A code generator converts floating-point pro-
grams to fixed-point programs that handle fixed-point data types and
arithmetic. The code generator also creates other auxiliary programs
for an automatic transformation environment. A range estimator finds
range information in the fixed-point system to prevent overflow and
underflow. Word length optimization finds the optimum word length
according to objectives such as signal distortion and hardware com-
plexity.

5.3 Automating Transformation from Floating Point to Fixed Point79

Function c = adder(a, b)

c = 0;

c = a + b;

(a) Floating point program for adder

Function [c] = adder_fx(a, b, numtype, mathtype)

c = 0;

a = fi (a, numtype.a, mathtype.a);

b = fi (b, numtype.b, mathtype.b);

c = fi (c, numtype.c, mathtype.c);

c(:) = a + b;

(b) Converted fixed-point program for adder (only the core code is
shown)

Figure 5.2: Conversion to fixed point by a code generator

5.3.1 Code Generation

The first process in the automating transformation to fixed point is
code generation. A given floating-point program shown in Fig 5.2 (a),
is converted to a fixed-point program, which can handle variable word
lengths, by a code generator after analyzing the given floating-point
program. The variable word length can be realized by a parameterized
input, as shown in Fig. 5.2 (b).

The fi is one of the functions in the Fixed-Point Toolbox in MAT-
LAB to define a fixed-point data type [97]. Each fixed-point variable is
defined via an input parameter and number type instead of constants.
This input parameter is controlled by word length optimization pro-
grams.

The code generator also creates several programs for a fixed-point

80 Automating Transformation to Fixed Point in Software

Top
Program

Search
Engine

Evaluation
Program

(Objectives)

Fixed-Point
Program

Floating-Point
Program

Error
Estimation

Complexity
Estimation

Range
Estimation

: Data Path
: Control Path

w : Wordlength

Input
Data

Output
Data

ww

w

Figure 5.3: Automated transformation environment

transformation environment, as shown in Fig. 5.3. The top program
generated by a code generator plays a role as headquarters in the trans-
formation to fixed-point. It establishes an environment for a range es-
timation and optimum word length search according to configurations
that can be modified by designers. The top program mainly executes
range estimations and word length optimizations.

The optimum word length depends on the input signal properties.
The input signal is passed by the top code, search engine, and objective
code. The top code calls a search engine, which explores the word
length space to find the optimum word length. The genetic algorithm
can be used as a search engine for multi-objective optimization.

The objective code collects objective values according to word
length states and input signal. One of objectives can be a signal error,
which is the difference between the floating-point output and fixed-
point output. Complexity, power consumption, or timing information
can be used as a objective.

5.3 Automating Transformation from Floating Point to Fixed Point81

5.3.2 Range Estimation

Range information is used to determine integer word length in order
to prevent overflow and underflow. A signal range can be estimated
by two methods. One is a simulation-based method and the other
is an analytical method. A simulation-based method monitors the
signal range of variables and finds a maximum value and a minimum
value. An analytical method calculates signal ranges by using a range-
propagation property through operations. Simulation is not necessary
in the analytical method. However, the calculated result from an an-
alytical method is conservative, and word length could grow infinitely
in feedback systems. A simulation-based method is useful for compli-
cated systems, including loops; however, it needs time for the simu-
lation. Both methods can be used selectively. The simulation-based
method can be used in feedback parts, and the analytical method can
be used in other parts.

5.3.3 Optimum Word Length Search

Optimum word length can be found with word length optimization
algorithms that have search algorithms, such as a complete search,
or sequential search, as described in Chapter 2. One of the more
powerful search engines is the genetic and evolutionary search engine.
The genetic search engine handles multi-objectives and finds a Pareto
front, although the computation complexity of this algorithm is very
high.

The search engine generates word length candidates, which the
evaluation function then evaluates. The information of the objective
values could be used to generate the next candidates. For the eval-
uation, the error value or difference value between the floating-point
programs and fixed-point programs can be obtained by an analytical
or statistical approach. The analytical approach models the error and

82 Automating Transformation to Fixed Point in Software

estimates the error at each system output. In the statistical approach,
simulation is used to estimate the error.

Cost value can be obtained by modeling the fixed-point systems.
Modeling the exact implementation scheme used would be specific to
the vendor. Area models in [12, 103] are used for complexity estima-
tion.

5.4 Case Study

A multiplier and accumulator (MAC) is commonly used in digital
signal processing such as filtering. Floating-point programs can be
converted to fixed-point programs by a code generator. One of the
options in conversion is that all variables and arithmetic units are
converted to fixed-point representations. The other option is that the
designated variables, which are indicated by a symbol, are converted.
For this case study, the second option is developed. Fig. 5.4 shows an
example of the MAC program in floating point MATLAB. The fx in
the comments is a known symbol directing a code generator to change
floating-point variables into fixed-point variables.

The converted fixed-point code is shown in Fig.5.5. First, the
function name is changed by appending fx, and two input parame-
ters, numtype and fimathtype, and one output parameter are inserted
in the first line. The variable, numtype, has word length information
regarding variables. The variable fimathtype has a fixed-point arith-
metic property. The output parameter is used for range information.

An initialization code is also inserted. The designated variables
can be initialized according to the transformation phase. In the range
estimation phase, word lengths are assigned to a high precision. In the
other phase, given word lengths are assigned to each variable in fixed-
point data type. For example, the variable acc is assigned to fixed-
point data type according to information in the numtype.acc variable

5.4 Case Study 83

Function acc = mac(in);

acc = 0; % fx

coef = 0.1; % fx

for i= 1:length(in)

t1 = in(i); % fx

t2 = t1 * coef; % fx

acc = acc + t2;

end

Figure 5.4: Example of MAC floating-point program

during the other phase. At the end of the converted code, the fxlog
function returns the range of each variable.

In the assignment, fixed-point variables have parentheses with the
value 1. In MATLAB, this method can be used to transfer the value
of the right-side part to the left-side part without changing the data
type.

A code generator also creates a cost function, a objective function,
and a top function. During parsing, the arithmetic relationship in
the fixed-point data type is stored to the file cost. MAC arithmetic
information is shown in Fig. 5.6. This file is called to obtain cost
information in objective functions. The cost of the multiplier and the
adder is predefined at each function.

A multi-objective function generated by the code generator is shown
in Fig. 5.7. There are two objectives in this code: signal distortion and
cost. This objective function calls a floating-point code and a fixed-
point code with word length for signal distortion information. The cost
function is called by this function to obtain cost information. The ob-
jective values according to the input word length state are returned

84 Automating Transformation to Fixed Point in Software

function [acc, logrep] = mac_fx(in, numtype, fimathtype)

fipref(’LoggingMode’,’On’);

if nargin < 2, numtype = gen_numerictype_init; end

if nargin < 3, fimathtype = gen_fimathtype_init; end

acc = [];

coef = [];

t1 = [];

t2 = [];

if ~isstruct(numtype)

% For range estimation

acc = fi(acc, numtype, fimathtype);

coef = fi(coef, numtype, fimathtype);

t1 = fi(t1, numtype, fimathtype);

t2 = fi(t2, numtype, fimathtype);

else

acc = fi(acc, numtype.acc, fimathtype);

coef = fi(coef, numtype.coef, fimathtype);

t1 = fi(t1, numtype.t1, fimathtype);

t2 = fi(t2, numtype.t2, fimathtype);

end

acc(1) = 0 ; % fx

coef(1) = 0.1 ; % fx

for i= 1:length(in)

t1(1) = in(i) ; % fx

t2(1) = t1 * coef; % fx

acc(1) = acc + t2; %

end

logrep = fxlog(acc,coef,t1,t2);

Figure 5.5: Automatically converted fixed-point code for MAC

5.4 Case Study 85

function cost = mac_cost(numtype)

% Automatically generated by fxconv.m

% cost_xxx(In1, In2, Out)

cost = 0;

cost = cost + cost_mul(numtype.t1.WordLength, ...

numtype.coef.WordLength, numtype.t2.WordLength);

cost = cost + cost_add(numtype.acc.WordLength, ...

numtype.t2.WordLength, numtype.acc.WordLength);

Figure 5.6: Generated MAC cost function

to the objective function, which is called a search engine. Any search
algorithm can be used as a search engine; however, multi-objective
optimization requires an engine that can handle multi-objectives.

A multi-objective genetic algorithm can handle multi-objective prob-
lems. A genetic and evolutionary algorithm toolbox (GEATbx) [104]
is employed as a search engine in the case study. This search engine
calls a given objective function to search the Pareto optimal set.

The top-level file calls the search engine and calculates the Pareto
front. The top file for MAC is shown in Fig. 5.8. This file is also
created by a code generator. Maximum and minimum word lengths
are copied from a general configuration file, which is called config.m.
The configuration for the search engine is also copied from a genetic
algorithm configuration file, which is called configgea.m.

There are three phases in the top file. The first phase is range
estimation, which finds the proper range information at each fixed-
point variable. The second phase is the searching phase, in which
optimum word lengths are searched. The third phase is analysis, in
which the Pareto front is drawn and stored.

The above mentioned files can be generated by the commands,
which can be used by a batch file, as shown in Fig. 5.9.

86 Automating Transformation to Fixed Point in Software

function ObjVal = mac_obj(Chrom, logrep, in)

% This file was automatically generated by gen_obj

% Length of Chrom

[Nind, Nvar] = size(Chrom);

for i = 1:Nind

vec_wl = Chrom(i,:);

% Get numeric type according to range information and default

wl_vec

numtype = gen_numerictype(logrep, vec_wl);

% Set fimath type

fimathtype = gen_fimathtype;

% excute with given wordlength

out_fx = feval(’mac_fx’, in, numtype, fimathtype);

out_fl = feval(’mac’, in);

% Object value

rms = (mean((double(out_fx)-out_fl).^2)).^0.5;

cost = feval(’mac_cost’, numtype);

ObjVal(i,:) = [rms cost];

end

Figure 5.7: Generated MAC objective function

5.4 Case Study 87

function [acc, pareto_fr] = mac_top(in);

MAX_WL = 15;

MIN_WL = 1;

[acc, logrep] = feval(’mac_fx’, in);

len_vec = length(logrep);

vec_min_wl = ones(1,len_vec) * MIN_WL;

vec_max_wl = ones(1,len_vec) * MAX_WL;

GeaOpt = tbx3int;

GeaOpt = geaoptset(GeaOpt, ’Selection.RankingMultiobj’,15);

GeaOpt = geaoptset(GeaOpt, ’Selection.Pressure’, 1.3, ...

’Selection.RankingMethod’, 1);

GeaOpt = geaoptset(GeaOpt, ’Termination.MaxGenerations’, 25, ...

’Termination.Method’, 1);

objfun = ’mac_obj’;

VLUB = [vec_min_wl; vec_max_wl];

[xnew, GeaOpt] = geamain2(objfun, GeaOpt, VLUB, [], logrep, in);

ObjV = feval(objfun, xnew, logrep, in);

RankOpt = [GeaOpt.Selection.Pressure; GeaOpt.Selection.RankingMethod; ...

GeaOpt.Selection.RankingMultiobj]’;

[FitnV, RankMOV] = ranking(ObjV, RankOpt, 1,

GeaOpt.System.ObjFunGoals);

plotmop(xnew, ObjV, RankMOV, ’Best individuals at end of optimization’);

NonDomInd = xnew(RankMOV==0,:);

NonDomIndObj = ObjV(RankMOV==0,:);

NonDom = [NonDomIndObj NonDomInd];

pareto_fr = sortrows(NonDom)

save mac_result pareto_fr xnew ObjV RankMOV;

Figure 5.8: Generated MAC top file

88 Automating Transformation to Fixed Point in Software

> filename = ’mac.m’;

% Generate Fixed-point file & Cost function

> fxconv(filename);

% Generate Object file

> gen_obj(filename);

% Generate block top file

> gen_top(filename);

Figure 5.9: Main batch file for code generation

The generated top file can be executed with any input data as

> in = rand(1,10)

> mac_top(in)

Then, the Pareto front is searched and drawn, as in Fig. 3.8 and Fig.
3.7 in Section 3.5.

5.5 Summary

This chapter presents techniques for the automating transformation
from floating point to fixed point in software. This software provides
an environment to transform floating-point programs to fixed-point
programs for digital signal processing algorithms. Fixed-point conver-
sion and word length optimization are executed in this environment. A
genetic algorithm is employed to handle multi-objective optimization.
The automating transformation software is available at

http://www.ece.utexas.edu/˜bevans/projects/wordlength/

Chapter 6

Summary and Future Work

6.1 Summary

This book has examined efficient methods for transformation from
floating point to fixed point for implementing digital signal processing
algorithms in fixed-point hardware, which offers lower cost and lower
power consumption.

Several search methods to find the optimum word length in the
transformation are compared. Table 6.1, which summarizes the ad-
vantages and disadvantages of the search algorithms, shows that the
complete method and genetic methods have more advantages than the
other methods. However, the complete search method is impractical
and the sequential and preplanned methods require less iteration than
the other methods. However, those methods are not able to handle
multiple objectives. The CDM search can handle multiple objectives
with a weighted sum method. Overall, however, the genetic algo-
rithms with the Pareto ranking approach have more advantages than
the other methods.

Word length search algorithms utilizing genetic and evolutionary

90 Summary and Future Work

Table 6.1: Advantages/disadvantages of word length search algorithms
Advantages Disadvantages
1. Global optimum 1. Local optimum
2. Pareto ranking 2. Weights in objectives
3. Handle multi-objectives 3. Single objective
4. Amenable to parallelism 4. Limited parallelism
5. Low algorithm complexity 5. High algorithm complexity
6. Fewer iterations 6. More iterations

7. Impractical

Methods 1 2 3 4 5 6 1 2 3 4 5 6 7
Advantages Disadvantages

Complete Y Y Y Y Y Y
Exhaustive Y Y Y Y Y
Sequential Y Y Y Y Y
Preplanned Y Y Y Y Y

Genetic(Weighted) Y Y Y Y Y
Proposed methods

CDM Y Y Y Y Y Y
Genetic(Pareto) Y Y Y Y Y

6.1 Summary 91

algorithms can optimize the signal quality vs. implementation com-
plexity tradeoffs. Alternatively, word length search algorithms utiliz-
ing gradient information can provide faster ways to find data word
lengths, but they become stalled in local optima.

Based on word length design case studies for a wireless communi-
cation demodulator, the speed improvement from adding sensitivity
information is by a factor of four. In the same case studies, the local
optimum word length searched by the proposed method also yields
30% lower implementation costs.

Word length reduction methods of signed right shift and trunca-
tion show a reduction in power consumption. The expected values of
the number of gates that switch during multiplication of the inputs
for the two methods are mathematically derived. The two methods
are applied to a 16-bit radix-4 modified Booth multiplier and a 16-bit
Wallace multiplier. The truncation method with 8-bit operands re-
duces the power consumption by 56% in the Wallace multiplier and
31% in the Booth multiplier. The signed right-shift method shows
25% power reduction in the Booth multiplier, but no power reduction
in the Wallace multiplier.

A fully automated method for transforming floating point to fixed
point in software is developed. This software provides an environment
for transforming floating-point programs into fixed-point programs in
digital signal processing algorithms. Automated conversion to fixed-
point and word length optimization are executed in the proposed envi-
ronment. This environment can employ genetic algorithms to handle
multi-objective optimization. The automating transformation soft-
ware from floating point to fixed point is available at

http://www.ece.utexas.edu/˜bevans/projects/wordlength/

92 Summary and Future Work

6.2 Future Work

There are many ways in which the work presented in this book could be
expanded to develop new search methods and low-power consumption
techniques. In this section some of the possibilities will be expanded
upon.

6.2.1 Advanced Word Length Search Algorithms

Hybrid word length optimization: The search methods used in
this book have their own strong points and weak points. The various
search methods could be used together to compensate for their disad-
vantages. The genetic algorithm requires considerable running time,
but it is not trapped in local optima. Gradient-based search algorithms
take less running time, but they do become trapped in local optima.
One way to combine the two approaches follows. The first step is use
a gradient-based method until it converges to a solution. The sec-
ond step is to use the trajectory of feasible solutions obtained by the
gradient-based search (either with or without the initialization phase
solutions included) as the initial generation for the genetic algorithm.
The third and final step is to run the genetic algorithm with a high
mutation rate to create a genetically diverse population. The insight
in taking this approach comes from Fig. 3.9, in which the gradient-
based search methods find a solution comparable to genetic algorithms
but with two orders of magnitude fewer system simulations. Another
way to combine the two approaches is to run a few generations of the
genetic algorithm, and then run the gradient-based search in parallel
on each solution obtained from the genetic algorithm. This is probably
the less promising of the two ways to combine the methods.

Dynamic word length bounds: During word length searching
process, the bounds of word length are fixed to a lower bound and

6.2 Future Work 93

an upper bound. In arithmetic operations, the output bound can be
changed according to the input word length bound. The upper bound
of the word length at the multiplier output is the sum of the upper
bounds at the multiplier inputs. Thus, the bound at input or output
can be dynamically changed according to the word length bound at
input or output. This approach could reduce the running time due to
the reduced search space.

Variable reduction: The running time in the word length search
algorithms is proportional to the number of variables. Given that all
variables in a floating-point program are to be converted to fixed-point
variables, the optimum word length of each variable is searched. Triv-
ial variables can be removed from the list of word length optimization
for greater speed. One variable is sufficient in the delay block, which
has input and output variables. The word length output of the adder
can be removed from the list since the maximum word length at output
is at most one more than the input word length.

Adaptive step size: The step size of update directions in gradient-
based search algorithms is an integer value. In this book, the value 1
is used for the integer step size. If the step size is larger than 1, word
length set could reach a neighbor of the optimum. After that, the step
size of value 1 can be used for refinement. This approach can reduce
running time.

6.2.2 Further Analysis on Search Algorithms

Analysis in GA with different genetic parameters: Genetic
algorithms (GA) mimic the process of plant and animal evolution.
There are many options to realizing a genetic algorithm. The gene
can be encoded as a real, integer, or binary number. Since word

94 Summary and Future Work

length is expressed in an integer number, in this book, an integer
encoding method is employed. Thus, any number within bounds is
selected during generation. If the binary encoding method is used,
the genetic operation could be refined and results would be different.
A comparison of the different options in GA would provide valuable
information. It is worthy of comparing different options in GA.

Weighted sum approach in GA: Multi-objective optimizations
have more than one objective. Weighted sum approaches assign weights
on each objective to derive a single objective. Pareto ranking ap-
proaches assign rank on each candidate by calculating the Pareto
rank. In this book, the Pareto ranking approach is employed because
Rohling [45] shows many disadvantages in the weighted-sum approach.
Research is needed to demonstrate the performance degradation of the
weighted-sum approach compared to the Pareto ranking approach in
word length optimization.

Comparison with other algorithms: Simulated annealing (SA)
and genetic algorithms (GA) are two stochastic methods currently in
wide used for difficult optmization problems. The GA is used in
book to optimize word length because of its simple implementation
procedure. Some papers show that a GA can outperform a SA for
design in some applications [105, 106]. However, it would be useful
for future research to consider simulated annealing algorithm in word
length optimization area.

6.2.3 Low Power Consumption

Low power consumption at the system level: Power consump-
tion can be reduced by decreasing word length in the system, although
hardware architectures are given. Chapter 4 shows the word length

6.2 Future Work 95

reduction techniques and estimates the power savings on multiplier
units. Word length reduction can also reduce power consumption
within other components such as memory. Powell and Chau show
a model for estimating power book in a class of DSP VLSI chips ac-
cording to word length [107]. Thus, it may be useful for future research
to explicitly consider power reduction with word length reduction at
the system level.

Low-power in floating-point hardware: In some applications,
the optimum word length in floating point can reduce power con-
sumption by 66% [108]. This book shows that power consumption
in multipliers can be reduced by using word length reduction tech-
niques. The multiplier would be a major power-consuming unit; how-
ever, units for addition and normalization in floating-point hardware
could also consume considerable power. Thus, the analysis or esti-
mation of power reduction in floating-point hardware could result in
low-power consumption by word length reduction techniques.

Distribution of power consumption Average power consump-
tion is estimated by using a Xilinx Xpower tool in this book. Small
multiplications on large Wallce and Booth multipliers could have dif-
ferent distribution of power consumption. Distribution information
of power consumption could be helpful for algorithm developments to
reduce power consumption.

6.2.4 Electronic Design Automation Software

Enhanced code generator: A simple parser that interprets one
arithmetic operation at each line has been developed to implement
the code generator in this book. Multiple operations do not work on
current parsers. Thus, a given floating-point program should have at

96 Summary and Future Work

most one arithmetic operation for each line. Code generator could be
enhanced by adding a decomposition of multiple arithmetic operations.

A parser can search a given commented symbol preceded with
floating-point variables in floating-point programs and convert the
variables to a fixed-point data type. Search engines search the opti-
mum word length of the converted fixed-point variables; however, de-
signers sometime want to set constraints, such as specific word length,
and rounding methods. The code generator used in this book could
not handle fixed-point constraints in variables. Enhancements are nec-
essary for generator to handle such constraints.

Range estimation: Range can be estimated by analytical or sta-
tistical approaches. An analytical approach offers faster results by
analyzing relationship of operations in the dataflow. However, the es-
timated range results from an analytical approach are conservative.
Furthermore, the estimated range in a feedback loop could grow in-
finitely. The statistical approach offers robust range estimation at the
expense of long simulation times. Thus, the two approaches could be
combined. The statistical approach could be used in a feedback loop
part, and an analytical approach could be used in other parts.

Dataflow approach: In this book, simulation-based approaches are
used. Range information has been monitored at each variable, and
propagated quantization errors are measured at the output of sys-
tems. However, the range information and the propagated error can
be obtained by analyzing dataflow graphs of systems. This approach
could reduce time and reduce word length variables.

6.2 Future Work 97

6.2.5 Optimum DSP Algorithms

This work takes an algorithm/system as is and quantifies the word
length of variables in terms of signal quality vs. implementation
complexity. Thus, the algorithm/system is not changed. The algo-
rithm/system can also be optimized in terms of signal quality vs. im-
plementation complexity. Rearranging the algorithm/system in filters
results in a better finite word length effect [78, 109]. The SPIRAL
project optimizes the digital signal processing algorithm and auto-
mates software and hardware development [110]. SPIRAL is a gener-
ator of libraries for fast software implementation of signal processing
transforms. These libraries are adapted to the computing platform
and can be re-optimized as the hardware is upgraded or replaced [111].
The next level of abstraction is to develop a system that simplifies,
rearranges, and expands the algorithm/system in search of a better
tradeoff between signal quality and implementation complexity.

6.2.6 Area Model

The area model of field programmable gate array (FPGA) [12] is used
in this work. Adder, gain, and delay units are modeled in terms of
word length. Other units such as transcendental function computation
can be modeled by using series of arithmetic units. Transcendental
signal generations such as sine and cosine waveforms can be modeled
by using difference equations or lookup tables.

In conclusion, while this work has made inroads into automating
transformation to fixed-point, there is a wide variety of search methods
and low power-consumption alternatives open to further study.

98 Summary and Future Work

Appendix A

Acronyms

ADC : analog-to-digital converter
BER : bit error rate
CM : complexity measure
CDM : complexity-and-distortion measure
CDMA : code division multiplex access
CMOS : complementary metal oxide semiconductor
CS : complete search
DSP : digital signal processing
DM : distortion measure
ES : exhaustive search
FER : frame error rate
FFT : fast Fourier transform
FPGA : field programmable gate array
FRIDGE : fixed-point programming design environment
FWL : fraction wordlength
GEA : genetic and evolutionary algorithm
HDS : hardware design system
IC : integrated circuit
IIR : infinite impulse response

100 Acronyms

IWL : integer wordlength
LPF : lowpass filter
LS : least significant
MAC : multiply and accumulate
MATCH : Matlab compiler for heterogeneous computing systems
MILP : mixed integer linear programming
MOEA : multi-objective evolutionary algorithm
MS : most significant
MSE : mean square error
OFDM : orthogonal frequency division multiplexing
PS : preplanned search
RMS : root mean square
SNR : signal-to-noise ratio
SPW : signal processing worksystem
SRS : signed right shift
SS : sequential search
TI : Texas Instruments
WL : wordlength

Appendix B

Notation

The notation used in this book is listed in Table B.1.

102 Notation

Table B.1: Notation used in this book
Notation Meaning
αc complexity weighting factor
αd distortion weighting factor
c cost function
cn(w) normalized complexity function
d sum of distance; L1 norm
dw distance between minimum and optimum wordlength
dn(w) normalized distortion function
f objective function
∇ gradient of function
p performance function
s integer step size
w = [w1, ..., wn] wordlength vector
w Wordlength
w upper bound in w
w lower bound in w
wk wordlength in kth iteration
ξ integer update direction
Creq complexity constant
Dreq required distortion
In n-dimensional integer space
Preq required performance

Bibliography

[1] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A
fixed-point design and simulation environment,” in Proc. IEEE
Design Automation and Test in Europe, France, France, Feb.
1998, pp. 429–435.

[2] W. Sung and K. Kum, “Simulation-based word-length optimiza-
tion method for fixed-point digital signal processing systems,”
IEEE Trans. Signal Processing, vol. 43, no. 12, pp. 3087–3090,
1995.

[3] S. Kim, K. Kum, and W. Sung, “Fixed-point optimization utility
for C and C++ based digital signal processing programs,” IEEE
Trans. Circuits Syst., vol. 45, no. 11, pp. 1455–1464, Nov. 1998.

[4] K. Kum, J. Kang, and W. Sung, “AUTOSCALER for C: An op-
timizing floating-point to integer c program converter for fixed-
point digital signal processors,” IEEE Trans. Circuits Syst.,
vol. 47, pp. 840–848, Sept. 2000.

[5] Hardware Design System, CoWare. [Online]. Available: http:
//www.coware.com

[6] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann,
M. Haldar, P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periy-

104 BIBLIOGRAPHY

acheri, M. Walkden, and D. Zaretsky, “A MATLAB compiler for
distributed, heterogeneous, reconfigurable computing systems,”
in Proc. IEEE Symposium on Field-Programmable Custom Com-
puting Machines, Apr. 2000, pp. 39–48.

[7] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens,
“A methodology and design environment for DSP ASIC fixed
point refinement,” in Proc. IEEE Design Automation and Test
in Europe Conference, Munich, Germany, Mar. 1999, pp. 271–
276.

[8] H.Yamashita, H. Yasnura, F. Eko, and Y. Cao, “Variable size
analysis and validation of computation quality,” in Proc. Int.
High-Level Design Validation and Test Workshop, 2000, pp. 95–
100.

[9] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Precision
and error analysis of MATLAB applications during automated
hardware synthesis for FPGA’s,” in Proc. Design Automation
and Test in Eur., Munich, Germany, Mar. 2001, pp. 722–728.

[10] K. Han, I. Eo, K. Kim, and H. Cho, “Bit constraint parameter
decision method for cdma digital demodulator,” in Proc. CDMA
Int. Conf. and Exhibition, vol. 2, Seoul, Korea, Nov. 2000, pp.
583–586.

[11] M. Cantin, Y. Savaria, and P. Lavoie, “A comparison of auto-
matic word length optimization procedures,” in Proc. IEEE Int.
Sym. on Circuits and Systems, Phoenix-Scottsdale, Ariz, USA,
May 2002, pp. 612–615.

[12] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Wordlength
optimization for linear digital signal processing,” IEEE Trans.

BIBLIOGRAPHY 105

Computer-Aided Design, vol. 22, no. 10, pp. 1432–1442, Oct.
2003.

[13] C. Shi and R. W. Brodersen, “Automated fixed-point data-type
optimization tool for signal processing and communication sys-
tems,” in Proc. Design Automation Conference, San Diego, CA,
June 2004, pp. 478–483.

[14] MOSEK ApS optimization software, MOSEK ApS, Copenhagen,
Denmark. [Online]. Available: http://www.mosek.com

[15] K. Han and B. L. Evans, “Wordlength optimization with
complexity-and-distortion measure and its applications to
broadband wireless demodulator design,” in Proc. IEEE Int.
Conf. on Acoustics, Speech, and Signal Proc., vol. 5, Montreal,
Quebec, Canada, May 2004, pp. 37–40.

[16] K. Han and B. Evans, “Optimum wordlength search using a
complexity-and-distortion measure,” EURASIP Journal on Ap-
plied Signal Processing, vol. 2006, no. 5, pp. 103–116, 2006.

[17] CoCentric Fixed-Point Designer, Synopsys. [Online]. Available:
http://www.sysnopsis.com

[18] SystemC 2.0 User’s Guide, 2002. [Online]. Available: http:
//www.systemc.org

[19] S. Kim and W. Sung, “A floating-point to fixed-point assembly
program translator for the TMS 320C25,” IEEE Trans. Circuits
Syst., vol. 41, no. 11, pp. 730–739, 1994.

[20] S. A. Wadekar and A. Parker, “Accuracy sensitive sensitive
word-length selection for algorithm optimization,” in Proc. Int.
Conf. Computer Design, Austin, TX, USA, Oct. 1998, pp. 54–
61.

106 BIBLIOGRAPHY

[21] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth anal-
ysis with application to silicon compilation,” in Proc. SIG-
PLAN Program. Lang. Design Implementation, Vancouver, BC,
Canada, June 2000, pp. 108–120.

[22] K. Kum and W. Sung, “Combined word-length optimization and
high-level sysnthesis of digital signal processing systems,” IEEE
Trans. Computer-Aided Design, vol. 20, no. 8, pp. 921–930, Aug.
2001.

[23] H. Choi and W. P. Burleson, “Search-based wordlength opti-
mization for VLSI/DSP synthesis,” in Proc. IEEE Workshop on
VLSI Signal Processing, vol. VII, Calif, USA, Oct. 1994, pp.
198–207.

[24] K. Han, I. Eo, K. Kim, and H. Cho, “Numerical word-length
optimization for CDMA demodulator,” in Proc. IEEE Int. Sym.
on Circuits and Systems, vol. 4, Sydney, NSW, Australia, May
2001, pp. 290–293.

[25] M. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie, “An auto-
matic word length determination method,” in Proc. IEEE Int.
Sym. on Circuits and Systems, vol. 5, Sydney, NSW, Australia,
May 2001, pp. 53–56.

[26] K. H. Rosen, Handbook of Discrete and Combinatorial Mathe-
matics. Boca Raton, Fla, USA: CRC Press, 2000.

[27] G. S. G. Beveridge and R. S. Schechter, Optimization: Theory
and Practice. New York, NY, USA: McGraw-Hill, 1970.

[28] J. A. Wepman, “Analog-to-digital converters and their applica-
tions in radio receivers,” IEEE Comm. Magazine, vol. 33, no. 5,
pp. 39–45, 1995.

BIBLIOGRAPHY 107

[29] S. Nahm, K. Han, and W. Sung, “A CORDIC-based digital
quadrature mixer: Comparison with ROM-based architecture,”
in Proc. IEEE Int. Sym. on Circuits and Systems, vol. 4, Mon-
terey, CA, USA, May-June 1998, pp. 385–388.

[30] J. S. Wu, M. L. Liu, H. P. Ma, and T. D. Chiueh, “A 2.6V,
44 MHz all-digital QPSK direct-sequence spread-spectrum tran-
seiver IC [wireless LANs],” IEEE Journal of Solid-State Circuits,
vol. 32, no. 10, pp. 1499–1510, 1997.

[31] C. Darwin, The Origin of Species by Means of Natural Selection.
Blatimore, Maryland: Penguin Books, 1859.

[32] D. Goldberg, “Genetic and evolutionary algorithms come of
age,” Communications of the ACM, vol. 37, no. 3, pp. 113–119,
Mar. 1994.

[33] J. Holland, Adaptation in Natural and Artifical Systems: An
Introductory Analysis with Application to Biology, Control, and
Artifical Intelligence. Ann Arbor, MI: University of Michigan
Press, 1975.

[34] D.E.Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[35] S. Kirkpatrick, C. G. Jr., and M. Vecchi, “Optimization by simu-
lated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[36] H. Schwefel, Numberical Optimization of Computer Models.
Chichester: John Wiley, 1981.

[37] D. Fogel, System Identification through Simulated Evolution: A
Machine Learning Approach to Modeling. Needham Heights,
MA: Ginn Press, 1991.

108 BIBLIOGRAPHY

[38] D. Fogel, A. Owens, and M. Walsh, Artificial Intelligence through
Simulated Evolution. New York: John Wiley and Sons, 1966.

[39] K. Tang, K. Man, and C. Y. . Chan, “Fuzzy control of water
pressure using genetic algorithm,” in Proc. IFAC Workshop on
Safety, Reliability and Applications of Emerging Intelligent Con-
trol Technologies, 1994, pp. 15–20.

[40] C. Karr, “Genetic algorithms for fuzzy controllers,” AI Expert,
vol. 6, no. 2, pp. 26–33, 1991.

[41] V. Maniezzo, “Genetic evolution of the topology and weight dis-
tribution of neural networks,” IEEE Trans. Neural Networks,
vol. 5, no. 1, pp. 39–53, 1994.

[42] P. Angeline, G. Saunders, and J. Pollack, “An evolutionary algo-
rithm that constructs recurrent neural networks,” IEEE Trans.
Neural Networks, vol. 5, no. 1, pp. 54–65, 1994.

[43] S. Hung and H. Adeli, “A parallel genetic/neural network
learning algorithm for MIMD shared memory machines,” IEEE
Trans. Neural Networks, vol. 5, no. 6, pp. 900–909, 1994.

[44] K. Tang, K. Man, and C.Y.Chan, “Genetic structure for NN
topology and weight optimization,” in Proc. IEE/IEEE Int.
Conf. GAs in Engineering Systems: Innovations and Applica-
tion, Sept. 1995, pp. 12–14.

[45] G. Rohling, “Multiple objective evolutionary algorithms for in-
dependent, computationally expensive objective evaluations,”
Ph.D. dissertation, School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, November 2004.

BIBLIOGRAPHY 109

[46] C. A. C. Coello, “Guest editorial: Special issue on evolution-
ary multiobjective optimization,” IEEE Trans. on Evolutionary
Computation, vol. 7, pp. 97–98, April 2003.

[47] F. Y. Edgeworth, Mathematical Physics, London, U.K., 1881.

[48] V. Pareto, Cours D’Economie Politique, Lausanne, Switzerland,
1896.

[49] C.M.Fonseca and P.J.Fleming, “Genetic algorithms for multi-
objective optimization: Formulation, discussion and generaliza-
tion,” in Proc. Int. Conf. Genetic Algorithm, July 1993, pp.
416–423.

[50] D.M.Kodek, “Design of optimal finite wordlength FIR digital fil-
ter using linear programming techniques,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-28, no. 3, pp. 304–308, June
1980.

[51] N. I. Cho and S. U. Lee, “Optimal design of finite precision
FIR filters using linear programming with reduced constraints,”
IEEE Trans. Signal Process., vol. 46, no. 1, pp. 195–199, Jan
1998.

[52] Y. C. Lim, S. R. Parker, and A. G. Constantinides, “Finite
word length FIR filter design using integer programming over a
discrete coefficient design,space,” IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-30, no. 4, pp. 661–664, Aug 1982.

[53] D. J. Xu and M. L. Daley, “Design of optimal digital filter using
a parallel genetic algorithm,” IEEE Trans. Circuits and Systems,
vol. 42, no. 10, pp. 673–675, Oct 1995.

110 BIBLIOGRAPHY

[54] K. Tang, K. Man, S. Kwong, and Q. He, “Genetic algorithms and
their applications,” IEEE Signal Processing Magazine, vol. 13,
pp. 22–37, November 1996.

[55] S.C.NG, S. Leung, C.Y.Chung, A.Luk, and W.H.Lau, “The ge-
netic search approach,” IEEE Signal Processing Magazine, pp.
38–46, Nov. 1996.

[56] D. M. Etter, M. J. Hicks, and K. H. Cho, “Recursive adaptive
filter design using an adaptive genetic algorithm,” in Proc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processing, 1982, pp.
635–638.

[57] D. Suckley, “Genetic algorithm in the design of FIR filters,” IEE
Proc. Circuits, Devices and Systems, vol. 138, pp. 234–238, April
1991.

[58] K.-S. Tang, K.-F. Man, S. Kwong, and Z.-F. Liu, “Design and
optimization of IIR filter structure using hierarchical genetic al-
gorithms,” IEEE Trans. Industrial Electronics, vol. 45, no. 3,
pp. 481–487, June 1998.

[59] M. Leban and J. F. Tasic, “Word-length optimization of LMS
adaptive FIR filters,” in Proc. IEEE Mediterranean Electrotech-
nical Conference, May 2000, pp. 774–777.

[60] M. Haseyama and D. Matsuura, “A filter coefficient quantization
method with genetic algorithm, including simulated annealing,”
IEEE Signal Processing Letters, vol. 13, pp. 189–192, April 2006.

[61] R. Cemes and D. Ait-Boudaoud, “Genetic approach to design
of multiplierless FIR filters,” IEE Electronics Letters, vol. 29,
no. 24, pp. 2090–2091, 1993.

BIBLIOGRAPHY 111

[62] G. Wade, A. Roberts, and G. Williams, “Multiplier-less FIR
filter design using a genetic algorithm,” Proc. IEE Vision, Image
and Signal Processing, vol. 141, pp. 175–180, 1994.

[63] Y. Yu and Y. Lim, “Genetic algorithm approach for the opti-
mization of multiplierless sub-filters generated by the frequency-
response masking technique,” in Proc. Int. Conf. Electronics,
Circuits and Systems, 2002, pp. 1163–1166.

[64] F. Ashrafzadeh and B. Nowrouzian, “Crossover and mutation
in genetic algorithms employing canonical signed-digit number
system,” in Proc. IEEE Midwest Symp. Circuits and Systems,
1997, pp. 702–705.

[65] A. Fuller, B. Nowrouzian, and F. Ashrafzadeh, “Optimization
of FIR digital filters over the canonical signed-digit coefficient
space using genetic algorithms,” in Proc. IEEE Midwest Symp.
Circuits and Systems, 1998, pp. 456–459.

[66] A. Lee, M. Ahmadi, G. Jullien, W.C.Miller, and R.S.Lashkari,
“Digital filter design using genetic algorithm,” in Proc. IEEE
Symp. Advances in Digital Filtering and Signal Processing, 1998,
pp. 34–38.

[67] A. Fuller and B. Nowrouzian, “A novel technique for optimiza-
tion over the canonical signed-digit number space using genetic
algorithms,” in Proc. Int. Symp. Circuits and Systems, 2001, pp.
745–748.

[68] N. Sulaiman and T. Arslan, “A genetic algorithm for the opti-
misation of a reconfigurable pipelined FFT processor,” in Proc.
Evolvalbe Hardware, June 2004, pp. 104–108.

112 BIBLIOGRAPHY

[69] ——, “A multi-objective genetic algorithm for on-chip real-
time optimisation of word length and power consumption in a
pipelined FFT processor targeting a MC-CDMA receiver,” in
Proc. Evolvalbe Hardware, June 2005, pp. 154–159.

[70] P. Fiore and L. Lee, “Closed-form and real-time wordlength
adaptation,” in Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Proc., vol. 4, Phoenix, Ariz, USA, Mar. 1999, pp.
1897–1900.

[71] H. Bolcskei, A. J. Paulraj, K. V. S. Hari, R. U. Nabar, and W. W.
Lu, “Fixed broadband wireless access: state of the art, chal-
lenges, and future directions,” IEEE Comm. Magazine, vol. 39,
no. 1, pp. 100–108, 2001.

[72] V. Erceg, K. V. S. Hari, M. S. Smith, K. P. Sheikh, C. Tap-
penden, J. M. Costa, D. S. Baum, and C. Bushue, “Channel
models for fixed wireless applications,” in IEEE 802.16. proposal
802.16.3c-01/29, 2001.

[73] D. S. Baum, “Simulating the SUI channel models,” Information
Systems Laboratory, Stanford University, Stanford, Calif, USA,
Tech. Rep., 2001.

[74] B. Shim and N. R. Shanbhag, “Complexity analysis of multicar-
rier and single-carrier systems for very high-speed digital sub-
scriber line,” IEEE Trans. Signal Processing, vol. 51, no. 1, pp.
282–292, 2003.

[75] G. Constantinides, “High level synthesis and word length opti-
mization of digital signal processing systems,” Ph.D. disserta-
tion, Department of Electronic and Electrical Engineering, Uni-
versity College London, London, U.K., Sept. 2001.

BIBLIOGRAPHY 113

[76] R. Fletcher, Practical Methods of Optimization, Vol. 2: Con-
strained Optimization. New York, NY, USA: John Wiley and
Sons, 1981.

[77] M. H. Hayes, Statistical Digital Signal Processing and Modeling.
New York, NY, USA: John Wiley and Sons, 1996.

[78] K. K. Parhi, VLSI Digital Signal Processing Systems. New
York, NY: John Wiley and Sons, 1999.

[79] M. T. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analy-
sis and minimization techniques for embedded DSP software,”
IEEE Trans. on VLSI Systems, vol. 5, pp. 123–135, Mar. 1997.

[80] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power
consumption in digital CMOS circuits,” Proc. IEEE, vol. 83, pp.
498–523, Apr. 1995.

[81] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power
by optimizing the necessary precision/range of floating-point
arithmetic,” IEEE Trans. VLSI Syst., vol. 8, pp. 273–285, June
2000.

[82] H. Lee, “A power-aware scalable pipelined Booth multiplier,” in
Proc. IEEE International Systems-On-Chip Conference, Sept.
2004, pp. 123–126.

[83] K. Han, B. L. Evans, and E. Swartzlander, “Data wordlength re-
duction for low-power signal processing software,” in Proc. IEEE
Int. Workshop on Signal Processing Systems, Austin, TX, USA,
Oct. 2004, pp. 343–348.

[84] O. T.-C. Chen, S. Wang, and Y.-W. Wu, “Minimization of
switching activities of partial products for designing low-power

114 BIBLIOGRAPHY

multipliers,” IEEE Trans. on VLSI Systems, vol. 11, pp. 418–
433, June 2003.

[85] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: A first step towards software power minimization,” in
Proc. IEEE Int. Conf. on Computer-Aided Design, San Jose,
CA, Nov. 1994, pp. 429–435.

[86] A. Booth, “A signed binary multiplication technique,” Quart. J.
Mech. Appl. Math., vol. 4, pp. 236–240, 1951.

[87] A. P. Chandrakasan, M. Potkonjak, J. Rabaey, and R. W.
Brodersen, “Optimizing power using transformations,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 14, pp. 12–31, Jan. 1995.

[88] A. T. Erdogan and T. Arslan, “Low power multiplication scheme
for FIR filter implementation on single multiplier CMOS DSP
processors,” IEE Electronics Letters, vol. 32, pp. 1959–1960,
Oct. 1996.

[89] B. Parhami, Computer Arithmetic Algorithm and Hardware De-
signs. Oxford University Press, 2000.

[90] S. Kim and M. Papaefthymiou, “Reconfigurable low-energy mul-
tiplier for multimedia system design,” in Proc. IEEE Workshop
on VLSI, Apr. 2000, pp. 129–134.

[91] G. Grimmett and D. Stirzaker, Probability and Random Pro-
cesses. Oxford University Press, 2001.

[92] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans.
on Computers, vol. 13, pp. 14–17, 1964.

BIBLIOGRAPHY 115

[93] K. C. Bickerstaff, E.E. Swartzlander, Jr., and M. J. Schulte,
“Analysis of column compression multipliers,” in Proc. IEEE
Symposium on Computer Arithmetic, June 2001, pp. 33–39.

[94] Spartan-3 FPGA Family: Complete Data Sheet, Xilinx,
Jan. 2005. [Online]. Available: http://www.xilinx.com/bvdocs/
publications/ds099.pdf

[95] W. Cammack and M. Paley, “Fixpt: a c++ method for devel-
opment of fixed point digital signal processing algorithms,” in
Proc. Hawaii Int. Conf. on System Sciences, Wailea HI, Jan.
1994, pp. 87–95.

[96] K. Kum, J. Kang, and W. Sung, “A floating-point to fixed-point
C converter for fixed-point digital signal processors,” in Proc.
SUIF Compiler Workshop, Aug. 1997.

[97] Fixed-Point Toolbox User’s Guide, The MathWorks, Inc., Natick,
MA, USA. [Online]. Available: http://www.mathworks.com

[98] Simulink Fixed Point, The MathWorks, Inc., Natick, MA, USA.
[Online]. Available: http://www.mathworks.com

[99] AccelChip DSP Synthesis, AccelChip, Inc. [Online]. Available:
http://www.accelchip.com

[100] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V.Kim, and
R. Uribe, “Automatic conversion of floating point MATLAB
programs into fixed point FPGA based hardware design,” in
Proc. IEEE Symposium on Field-Programmable Custom Com-
puting Machines, Apr. 2003, pp. 263–264.

[101] M.Coors, H. Keding, O.Luthje, and H. Meyr, “Integer code gen-
eration for the TI TMS320C62X,” in Proc. IEEE Int. Conf. on

116 BIBLIOGRAPHY

Acoustics, Speech, and Signal Proc., vol. 2, May 2001, pp. 1133–
1136.

[102] D. Menard, D. Chillet, F. Charot, and O. Sentieys, “Automatic
floating-point to fixed-point conversion for DSP code genera-
tion,” in Proc. Int. Conf. Compilers, Architecture, and Synthesis
for Embedded Systems, Grenoble, France, 2002, pp. 270–276.

[103] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Opti-
mum wordlength allocation,” in Proc. of the 10th Annual IEEE
Sym. on Field-Programmable Custom Computing Machines,
Apr. 2002, pp. 219–228.

[104] Genetic and Evolutionary Algorithm Toolbox for Use with
Matlab. [Online]. Available: http://www.geatbx.com

[105] F. Ares, S. Rengarajan, E. Villaneuva, E. Skochinski, and
E. Moreno, “Application of genetic algorithms and simulated
annealing technique in optimising the aperture distributions of
antenna array patterns,” Electronics Letters, vol. 32, no. 3, pp.
148–149, 1996.

[106] D. R. Thompson and G. L. Bilbro, “Comparison of a genetic
algorithm with a simulated annealing algorithm for the design
of an ATM network,” IEEE Communications Letters, vol. 4,
no. 8, pp. 267–269, 2000.

[107] S. R. Powell and P. Chau, “A model for estimating power dissi-
pation in a class of DSP VLSI chips,” IEEE Trans. Circuits and
Systems, vol. 38, no. 6, pp. 646–650, June 1991.

[108] F.Fang, T. Chen, and R. Rutenbar, “Floating-point bit-width
optimization for low-power signal processing applications,” in

BIBLIOGRAPHY 117

Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc.,
vol. 3, May 2002, pp. 3208–3211.

[109] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time
Signal Processing. Upper Saddle River, NJ, USA: Prentice-Hall,
1998.

[110] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. W. Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code gen-
eration for DSP transforms,” Proceedings of the IEEE, vol. 93,
no. 2, pp. 232–275, 2005.

[111] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson,
D. Padua, M. Veloso, and R. W. Johnson, “SPIRAL: A gen-
erator for platform-adapted libraries of signal processing algo-
rithms,” Int’l Journal of High Performance Computing Applica-
tions, vol. 18, no. 1, pp. 21–45, 2004.

Index

Acronmys, 99
analytical approach, 2, 4, 8
Appendices, 98
area model, 97
AUTOSCALER, 2

BER, 39
Bibliography, 117
Booth multiplier, 61, 69
branch-and-bound, 10

CDMA, 22
CoCentric, 2
code generation, 79
code generator, 78, 95
complete search, 13
complexity measure (CM), 34
complexity-and-distortion measure

(CDM), 36
conditional expectation, 65
config.m, 85
configgea.m, 85
constraint, 11

Dadda dot, 68

dataflow, 96
distortion measure (DM), 35

Evolutionary algorithm, 26
evolutive search, 10
exhaustive search, 10, 14

FFT, 38
fimathtype, 82
FIR, 62
fixed-point, 7
fixed-point DSP, 76
fixed-point simulation, 2, 76
floating-point, 7
fractional word length (FWL), 7
frame error rate, 21
FRIDGE, 77
fx, 82
fxlog, 83

GEATbx, 85
Genetic algorithm, 25
genetic algorithm, 94
gFix, 76
gradient, 17

INDEX 119

HDS, 77

IIR, 41
integer word length (IWL), 7
Introduction, 1

local search, 10, 16
LS, 59

MAC, 61, 82
MATCH, 2
MATLAB, 77
max-1 search, 10
MILP, 77
min+1 search, 16
Mosek optimizer, 77
motivation, 1
MS, 59
multi-objective, 27, 85

non-dominated, 28
Notation, 101
numtype, 82

OFDM, 38
operand-swapping, 61
optimum word length, 11, 12
outline, 6
output SNR, 22

Pareto front, 28, 49, 85
Pareto optimality, 28
Pareto rank, 28
power consumption, 60

preplanned search, 10, 18

quantization step, 8

radix-4, 69
range estimation, 2, 77, 81, 96
range estimator, 78
rank, 28
recoding, 69
RMS, 50

Scope, 5
search engine, 80
sensitivity, 34
sequential search, 10, 16
signed right shift, 65
Simulated annealing, 94
simulation-based search, 12
SPW, 2
statistical approach, 2, 4, 9
step size, 12
stopping criteria, 12
switching power, 60

truncation, 65

update direction, 12

Wallace multiplier, 68
weighting factor, 37
word length, 7
word length optimization, 2, 11
word length reduction, 58
word length search, 81

