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Abstract: Ramp merging is one of the major causes of traffic accidents and congestion
along freeways due to its inherent chaotic nature. To handle this, researchers have pro-
posed globally optimal ramp merging coordination strategies using intelligent vehicles,
such as connected vehicles (CVs), autonomous vehicles (AVs), and connected and auto-
mated vehicles (CAVs). However, few of them have been able to systematically weave
personalized driver behavior consideration into ramp merging strategies. In a foresee-
able future, intelligent vehicles still need to understand the intentions and behaviors of
surrounding vehicles during interactions. Toward this end, challenges to be addressed in-
clude: (1) predicting the behavioral interactions with other human-driven vehicles; (2) pro-
viding personalized driving guidance (e.g., Advanced Driver-Assistance Systems (ADAS)
for better performance; and (3) boosting the user’s acceptance and trust in intelligent ve-
hicles. In this chapter, we design a ramp merging coordination system considering both
longitudinal and lateral personalized driver behaviors. This system provides a holistic so-
lution to the traffic environment with different levels of driving automation and wireless
connectivity. Cooperative ramp merging algorithms that aim to address human-vehicle
harmonization and intervehicular coordination are developed. A simulation platform
and a real-world testbed are built for data collection and algorithm validation.

Keywords: Cooperative ramp merging, driver behavior, prediction, cosimulation,
field implementation

15.1 Introduction

Traffic-related notions such as safety, efficiency, and environmental sustainability
have drawn significant attention as transportation is more involved in people’s daily
lives. Among the factors leading to traffic congestion and accidents, ramp merging
has a significant amount of impact [1]. Vehicles merging near the ramp area have
been a major concern that generates numerous potential conflicts, due to the chaotic
nature of driving behaviors and the lack of coordination in the merging area. The dif-
ficulty arises for drivers of ramp vehicles (RVs) along the on-ramp, where drivers
must discern to accelerate/decelerate to enter the mainline safely without a clear line
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of sight regarding the mainline traffic. Meanwhile, drivers of mainline vehicles may
have to modify their vehicle speeds to permit the entrance of RVs, thus affecting up-
stream traffic flows and consuming excessive energy.

The emergence of connected and automated vehicle (CAV) technology brings about
solutions to ramp merging issues. By taking the advantage of vehicle-to-everything
(V2X) communications, vehicles can communicate with other road participants. As a
typical example of CAV technology implementation, the cooperative merging of vehicles
at ramp has been studied and applied by various researchers around the globe, where
connected vehicles (CVs) communicate with vehicles coming from the other lane di-
rectly or through roadside infrastructure, and hence conduct cooperative merging ma-
neuvers in a safe and smoothed manner [2–4].

Since CAVs are supposed to share the road with legacy vehicles in a foreseeable
future, considering the mixed traffic environment is more pragmatic, though more
challenging in terms of regulating the entire traffic stream. The well-planned operation
for CAVs may be interrupted by legacy vehicles (human-driven vehicles); hence the in-
teraction between CAVs and legacy vehicles should not be ignored. Specifically, CAVs
need to understand human-driven vehicles’ behaviors, make decisions dynamically re-
garding the actions to be taken, and execute such actions through the planner and con-
troller. Therefore, many researchers incorporate driving behavior modeling into their
planning and control design [5–7], recognized as the driver behavior-aware system.

The remainder of this chapter is organized as follows: in Section 15.2, the state of
the art of ramp merging coordination and driver behavior modeling are reviewed.
Section 15.3 explains the methodology of the behavior-aware ramp merging coordina-
tion system. Section 15.4 elaborates on how the proposed algorithms are validated in
both simulation and real-world testbeds. Finally, the chapter is concluded with future
directions in Section 15.5.

15.2 Literature Review

15.2.1 Ramp Merging Algorithms for CAVs

Numerous cooperative ramp merging methodologies have been proposed for some
time now. The concept of utilizing virtual vehicles in the highway on-ramps cooperative
merging case originated from Uno et al. [8] and got adopted by some consecutive stud-
ies [9–11]. This approach maps virtual copies of the real vehicles onto the other merging
lane before the actual merging happens, so CVs can adjust their formation in advance
and avoid last-minute speed changes.

Other than the virtual vehicle concept, the merging cooperation is formulated as
two optimal trajectory planning problems for a pair of the ramp and mainline vehicles
by Zhou et al. [12], without presuming a merging location. Rios-Torres and Malikopoulos
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[13] presented an optimization framework and an analytical closed-form solution that
allowed online coordination of CAVs at ramp merging zones and further studied the
impact of partial penetrations of CAVs on fuel consumption and traffic flow for the
ramp merging scenario [14]. Besides the numerical simulation and/or microscopic traf-
fic simulation, game engine simulation (e.g., Unity and CARLA) was also used to evalu-
ate the cooperative ramp merging system, where human-in-the-loop (HuiL) simulation
can be conducted and compared with the proposed methodology as a baseline [15].

Apart from these methods, game theory has also been widely adopted in ramp
merging strategies for CAVs decision-making, as it can model how human drivers decide
to compete or cooperate with others, hence enabling the analysis of the interaction be-
tween them [16]. To get a global perspective and obtain the optimal solution, centralized
optimization algorithms have been developed to coordinate the ramp merging maneu-
vers. Jing et al. [17] designed a cooperative game-based merging sequence coordination
system to arrange CAVs into platoons and used optimal control to guarantee the best
sequence in terms of mobility and fuel consumption. To mitigate shockwaves caused by
merging maneuvers, Akti et al. [18] proposed a game theory-based algorithm to organize
the longitudinal and lateral movements for merging vehicles, in a fully connected envi-
ronment. By estimating surrounding vehicles’ aggressiveness as their utilities, Zhang
et al. [19] presented a game theory-based model predictive controller to find out the opti-
mal gap and perform mandatory lane-changing, by searching up to three gaps on the
adjacent lane.

However, most of these studies rely on a strong assumption of a 100% CAV pene-
tration rate, allowing for a centralized complete game approach that can utilize full
information [20]. In contrast, especially in mixed traffic with a low penetration rate,
CAVs can only form an incomplete game with limited information from the legacy ve-
hicles within the detection range of CAVs.

15.2.2 Driver Behavior Modeling

Since driver behavior study plays a significant role in the system that involves human
beings, to design an interactive and cooperative system, CAVs are required to consider
both human–machine coordination inside a vehicle and intervehicular coordination
inside a vehicle. Therefore, a number of researchers investigated human–machine in-
teraction from different angles, such as driver type (e.g., driving style [21] and de-
mands [22]) clustering and driver preference recognition [23]) and driver condition
(e.g., driving performance [24] and mood states [25]) classification.

However, most of these driver behavior modeling algorithms only consider the ego
vehicle (instrumented vehicle) state and ignore the interaction with the surroundings. It
is noted that intervehicular coordination is significant in a ramp merging system design.
The behavior modeling for intervehicular coordination requires not only the ego vehicle
states but also the surroundings and vehicular interaction. Sun et al. [26] introduced a
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hierarchical inverse reinforcement learning (IRL)-based algorithm to predict both dis-
crete decisions and continuous trajectories of a target vehicle involved in a two-vehicle
ramp merging interaction. The driver’s preference for vehicle state and interactions can
be expressed by the cost function recovered by IRL [27], which assumed that the driver
was driven by optimizing the unknown reward function. In [28], the interaction behav-
ior under different conditions was formulated as a cost function with different combina-
tions of features and learned by continuous IRL.

15.3 Methodology

15.3.1 Schema of Ramp Merging Coordination System

This section elaborates about the design of a cooperative ramp merging system for both
fully connected traffic and mixed traffic. The proposed system is designed from a decen-
tralized agent-based model perspective for CAV, allowing vehicles to act independently.
For algorithm development and verification, we establish a database, a local server for
real-world algorithms implementation, and a HuiL cosimulation platform. The strategy
workflow is shown in Fig. 15.1, where every vehicle goes through these modules con-
nected by the solid line at each time step.
1. Merging conflict identification module: Based on the information from the perception

system or other CAVs, this module judges whether conflicts anticipates in the future
and identifies the vehicle type of competitor (e.g., CAV, CV, AV, or legacy vehicle).

2. Merging behavior modeling and merging behavior prediction modules: These two
modules comprise the behavioral layer to understand and predict the involved
drivers’ behavior. By modeling the driver behavior during merging, the predic-
tion module can estimate whether, when, and where the merging will happen.

Fig. 15.1: Schema of the proposed behavior-aware ramp merging coordination system.
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3. Merging sequence determination module: This module captures the interaction be-
tween the ego vehicle and its surroundings based on game theory. Ego vehicle
forms an individual (two-player) game with each of its competitors (i.e., each po-
tential conflicting vehicle). In each game, each player chooses to be a follower or
a leader to determine the merging sequence.

4. Acceleration control module: This module is responsible for ensuring the ego vehi-
cle run at the desired speed and tracks the lane (e.g., by providing speed guidance).

15.3.2 Merging Behavior Modeling and Prediction

Unlike the case of two conflicting CAVs with direct communication, CAVs need to esti-
mate the merging intention (i.e., yes or no), location, and timing of their human-
driven competitors. The proposed algorithm [29] can be used to model and predict the
behavior of human-driven vehicles, every time encounter a human-driven vehicle. If
the human-driven vehicle is connected to the cloud (e.g., by cellphone), the CAV can
identify and obtain the model of the driver to facilitate the prediction.

The system consists of an offline learning process and an online validation process
as depicted in Fig. 15.2. In the offline modeling process, based on the historical trajec-
tory dataset, a long short-term memory (LSTM) model [30] is trained to predict the lane
change decision, whose input is a trajectory sequence ξ = slstmt−T , . . . , slstmt

� �
of the last T

steps vehicle states. The output of the sequence-to-sequence LSTM model is the pre-
dicted lane change action sequence At+1, . . . , At+T+1ð Þ for the next T steps. The cost
function inferring the driver preference is learned by IRL. In the online prediction pro-
cess, at each time step, the vehicle states will be analyzed by the LSTM network to rec-
ognize the merging maneuver and select a proper cost function. Next, the cost function
is used to evaluate the confidence of all possible trajectories provided by the trajectory
generator. Finally, the system outputs are the most probable trajectory and lane change
probability at the current step.

15.3.3 Driver Preference Inference and Trajectory Prediction

The driver behavior and preference are usually represented by a cost function, and
rational drivers behave by optimizing their cost function. Considering the continuity
of the trajectory space, this study adopts continuous IRL with locally optimal exam-
ples [31] to recover this unknown cost function from expert demonstrations.
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15.3.3.1 Continuous IRL

The cost function is a linear combination of a set of features, that is, Ci θi, ξð Þ= θTi fi ξð Þ, i=
achange , akeep
� �

, where θTi is the weights vector emphasizing the features and fi ξð Þ=
fi s1, s2, . . . , stð Þk k2. The goal of the IRL is to figure out the optimal weights θ✶i to describe

each driver’s preference, which maximizes the likelihood of the driver’s historical trajec-
tories Ξ = ξkf g, shown as follows:

θ✶i = argmax
θi

P Ξ j θið Þ. (15:1)

According to the principle of maximum entropy [32], a trajectory with a low cost has
a higher probability, which is proportional to the exponential of its cost. To handle
the computational complexity, the continuous IRL approximates eq. (15.1) and refor-
mulates the problem as a minimization of − log P Ξ j θið Þ:

θ✶i = argmin
θi

XK
k = 1

1
2
gTθi ξkð ÞH−1

θi
ξkð Þgθi ξkð Þ− 1

2
log Hθi ξkð Þj j, (15:2)

where gT and H are the gradient and Hessian, respectively.
The selected features f ξð Þ present the vehicle state in an interpretable way and

can capture the preference of the driver. To calculate the cost function, we select the
features based on their contribution to the dataset variance, considering the available
IMU and GNSS information, including (a) car-following risk frisk f , (b) lane change risk
frisk lc, (c) lane change urgency furge, (d) mobility fm, (e) longitudinal comfort fa and
lateral comfort fyaw, and (f) lane deviation fdev.

15.3.3.2 Trajectory Generation and Probability Estimation

To execute the decision of lane change or lane keeping, planning of the trajectory is
essential. Considering the real-time performance, instead of exploring arbitrary trajec-
tory, we adopt a polynomial trajectory generator [33] to plan the candidate trajectories
~ξk . As the trajectory evaluation module is shown in Fig. 15.2, at each time step, this tra-
jectory generator plans multiple trajectories within a prediction window, taking the ve-
hicle state as the input. Based on eq. (15.3), the cost function Ciðθi,~ξkÞ is used to evaluate
the probability of each possible trajectory ~ξk and select the most probable trajectory.
The probability of the lane change maneuver prediction is evaluated by eq. (15.4), that
is, the probability of lane change equals the sum of the probability of all sampled lane
change trajectories. Based on eqs. (15.3) and (15.4), we can obtain the most probable tra-
jectory and lane change probability. Therefore, this module can predict whether, when,
and where the human driver will perform the merging:
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Pðξk θ✶i
�� �

= e−Ci
�
θ✶i ξk

�
PK

k = 1e
−ci
�
θ✶i , ξk

�, (15:3)

P âið Þ=
XK
k = 1

P ξ
⁓

kjθ✶i
� �

(15:4)

15.3.4 Ramp Merging Coordination

15.3.4.1 Merging Sequence Determination

After predicting the merging behavior of surrounding vehicles and knowing the con-
flict cannot be avoided, a game between a mainline vehicle and a RV is played in each
time step whenever a conflict exists [34]. The game starts when the conflict emerges
and ends until this conflict is solved. During the merging process, complex conflict
can be summarized with three types of scenarios including the interactions between
(1) two legacy vehicles, (2) two CAVs, and (3) a CAV and a legacy vehicle. This chapter
will only discuss the CAV(s) involved conflicts since the conflicts between two legacy
vehicles cannot be coordinated directly by CAVs. Hereafter, this section will analyze
the merging strategy from the perspective of the ego vehicle (CAV).

15.3.4.2 Game Formulation and Cost Function Design

When a potential conflict exists in the merging area, at least one of the mainline vehicles
and RVs needs to adjust its speed for a certain merging sequence. For the decision-
making purpose, Game Theory [35] is adopted for CAVs to evaluate their situation and
then figure out the optimal merging strategy. A two-player non-zero-sum game is used for
handling each conflict. In such a game, the ego vehicle is named Player 1 (P1), while its
competitor is Player 2 (P2). Both P1 and P2 can choose either to be a leader or a follower,
with the action set defined as A P1ð Þ= 1: leading, 2: followingf g, and A P2ð Þ= 1: leading,f
2: followingg.

Safety is always the highest priority to be considered in a valuable cost function.
The cost of rear-end collision risk (Jcrisk) for each action is calculated by combining pre-
dicted TTC (̂tTTC) and predicted time headway of ego vehicle (ĥev). To consider the
merging urgency of a RV, the distance to the end of the merging area should be added
to the risk value of the RV as the risk of merging (Jmrisk). To summarize, the risk for
mainline vehicles and RVs used in this study can be expressed as follows:
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Jrisk =
Jcrisk, mainline vehicles
Jcrisk + Jmrisk
� �

=2, ramp vehicles
.

(
(15:5)

Saving travel time may be another target for players in the game. Adding a mobility
term helps CAVs find the balance between safety and speed and improve traffic effi-
ciency at the same time. The cost of travel mobility ( Jmobility) can be evaluated by com-
paring the ego vehicle speed difference of either being a follower or a leader in the
game.

To improve the driving comfort, hard braking and drastic acceleration are penal-
ized as the cost term of comfort ( Jcomfort), by evaluating the acceleration.

In conclusion, the overall cost (�J) is

�J = α1 Jrisk+α2 Jmobility+ α3 Jcomfort, (15:6)

where each cost term is normalized; αi ≥ 0, i= 1, 2, 3, is the weight for each term in the
cost function, and

P
i αi = 1.

15.3.4.3 Noncooperative Game and Cooperative Game

After estimating the cost of each player’s action, the optimal merging sequence can be
obtained from a decision table, which depends on the game type, either noncoopera-
tive or cooperative game, and a game can be only initiated by CAV. If the CAV receives
no response from the other party, a noncooperative two-player game will be formed,
where the CAV will adopt a selfish strategy, as the noncooperative game in Tab. 15.1.
To avoid a collision, the ego vehicle will not choose to play the same role as its com-
petitor at the same time. Therefore, the costs for both players being the leaders or fol-
lowers simultaneously are set to be infinity (or very large). The game between two
CAVs would be a cooperative one, where players can make decisions together. The

Tab. 15.1: Decision table for two-player game.

Noncooperative game Competitor

Ego vehicle Role Leader Follower

Leader ∞ �Jlead

Follower �J follow ∞

Cooperative game Partner

Ego vehicle Role Leader Follower

Leader ∞ �J egolead +�J
p
follow

Follower �J egofollow +�J
p
lead ∞
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decision table of the cooperative game between two CAVs is shown as cooperative game
in Tab. 15.1. A cooperative game can optimize the total cost (based on the information
shared via vehicle-to-vehicle communication) for both CAVs. Once the merging se-
quence of various merging vehicles is decided by the proposed model, the merging ma-
neuver between any two vehicles is simplified into a car-following problem [36], with
their leaders assigned by themerging sequence determination module.

15.4 Experiment Platforms and Case Study

To develop and validate the proposed behavior modeling, prediction, planning, and
control algorithms, a simulation platform, and a real-world test bed are built. Besides
the introduction of these two experiment platforms, case studies for merging predic-
tion and cooperative ramp merging coordination will be elaborated in this section.

15.4.1 Algorithm Validation on Human-in-the-Loop Co-simulation
Platform

As shown in Fig. 15.3, based on a real road network, an integrated co-simulation platform
is set up to connect Unity, SUMO, and AWS, where vehicle models, traffic networks, and
cloud computing are seamlessly combined [37]. The HuiL simulation is supported by the
Logitech driving set, providing high-fidelity interactions between a human-controlled ve-
hicle and other background traffic. Moreover, it is a scalable cloud-based platform con-
necting to AWS, which is extended for synchronous or asynchronous multiplayer games
and driving data collection, storage, and mining for driver behavior modeling.

Before envisioning the real-world implementation, the proposed ramp merging coor-
dination system is developed and validated in simulation. In this study, 37 trips with lane
changes and 22 trips without any lane change within the on-ramp/off-ramp area are col-
lected on the HuiL co-simulation platform. A neural network is trained to predict the lane
change maneuver, and the cost function of both merging and lane keeping is recovered
by IRL. The online merging behavior prediction is visualized as in Fig. 15.4, including lane
change maneuver and the most likely trajectory. The proposed algorithm recognizes the
lane change maneuver in 3 s before the vehicle crosses the borderline, and the mean Eu-
clidean distance is used to quantify the accuracy of trajectory prediction, and it achieves
0.39 m within a 4 s prediction window in an average of 10 test trips [29].

Furthermore, a traffic flow level simulation is carried out to evaluate how the sys-
tem benefits from different traffic conditions, where three congested levels and four
levels of CAV penetration rate are discussed. A typical merging interaction during the
simulation is shown in Fig. 15.5, where two CAVs solve a similar conflict with a coop-
erative game. The actions of two CAVs are exclusive, with one being the follower and
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the other one being the leader. Before the conflict starts, the on-ramp CAV accelerates
to reach the mainline speed. At the instant two CAVs encounter each other, the merg-
ing sequence is decided. The cooperative merging between two CAVs takes only 2.86 s
to solve the conflict, which is much faster than 5.26 s in a noncooperative game. Com-
pared with the baseline model provided by SUMO [38,39], the average speed of traffic
flow can be increased up to 210%, while the fuel consumption can be reduced up to
53.9%. In addition, the driving volatility can be stabilized to a level with 0% extreme
values.

(a)

(b)

Fig. 15.4: Ramp merging behavior prediction. (left) The whole process of lane change prediction. (right)
The most likely trajectory visualization in the simulation platform.
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15.4.2 Real-World Experiments Using Cloud-Based CAV Ramp
Merging Testbed

As a realization of the “digital twin” concept, a flexible cloud-based CAV system frame-
work has been developed and demonstrated [40]. Real-world field implementation of
the proposed ramp merging system has been conducted with three passenger vehicles.
As the prototype of the simulation road network, the test track consists of a ramp and a
mainline, where the mainline spans from the intersection of Columbia Avenue and Chi-
cago Avenue to the intersection of Iowa Avenue in Riverside, California. In the digital
twin framework presented in Fig. 15.6, onboard devices upload the data to the cloud
server through the 4 G/LTE cellular network. The server creates digital twins of vehicles
and drivers whose parameters are synchronized in real time with their counterparts in

(a)

(b)

Fig. 15.5: Process of a cooperative game: (left) Two CAVs compete for merging; (middle) Merging order is
determined; (right) the whole process of the game.
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the physical world, processes the data with the proposed models in the digital world,
and sends advisory information back to the vehicles and drivers in the physical world.
Fig. 15.6 shows how the speed guidance is shown in a uniquely built user interface.

Once the merging sequence is determined by the upstream planning module, the
cooperative merging control is responsible for guiding the vehicle to the defined se-
quence with a safe merging gap. Four merging stages are introduced in Fig. 15.7. In
stage 1 (i.e., Fig. 15.7(a)), the mainline following vehicle (MV2) is assigned to follow the
mainline leading vehicle (MV1) and enters the interacting zone at a constant speed. At
the same time, the RV receives the countdown information from the approaching MV1.
In stage 2 (i.e., Fig. 15.7(b)), RV is assigned to follow MV1 and starts to accelerate based
on the speed suggestion. In stage 3 (i.e., Fig. 15.7(c)), MV2 is assigned to follow RV when
RV satisfies the requirement. RV is ready to merge, while MV2 is notified to slow down
and generates a gap for the merge. In stage 4 (i.e., Fig. 15.7(d)), given enough intervehicle
gap, RV merges into the vehicle string.

Specifically, compared with the baseline scenario with no advisory information
during the merging process, the proposed system reduces the average speed variance
by 67.41%, reduces pollutant emissions by up to 31.21%, and reduces fuel consumption
by 7.45%, respectively.

Fig. 15.6: General architecture of the vehicle-to-cloud-based cooperative ramp merging system.
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15.5 Conclusions

This chapter presents a behavior-aware cooperative ramp merging system for CAVs
in the mixed traffic environment. The proposed system has been evaluated in a HuiL
simulation platform, and the field implementation has been conducted in the real
world using a V2C digital twin approach. The result shows that the proposed system
improves the current ramp merging scenario in terms of safety and environmental
sustainability. As one of the few ramp merging algorithms developed for mixed traf-
fic, some challenges need to be addressed along its future development pathway: (1)
In addition to general driving behavior, algorithms need to consider personalized
preference by modeling the personalized driving behavior; (2) the lateral planning
and control algorithms for ramp merging at both traffic and vehicle must be explored;
(3) to allow CAV to drive like a human, the algorithm should consider user acceptance
and trust issues; (4) more discussions on how the simulation can be combined with
real-world experiments are in demand.
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